

Damietta University Faculty of Commerce English Program

Production and Operations Management

Second Year, Week 9: 7 April 2020

Compiled and Edited By: Dr. Soliman Rakha

Location Strategies

Location Strategies Transportation Models

Outline

- Transportation Modeling
- Developing an Initial Solution
- The Stepping-Stone Method

Learning Objectives

When you complete this part of current chapter you should be able to:

- 1. **Develop** an initial solution to transportation models with the northwest-corner method
- 2. **Develop** an initial solution to transportation models with the intuitive lowest-cost method
- 3. Solve a problem with the stepping-stone method

Transportation Modeling

- An interactive procedure that finds the *least* costly means of moving products from a series of sources to a series of destinations
- Can be used to help resolve distribution and location decisions

The main objective is: Cost Minimization (Currency units, Hours, Distances)

How do Transportation Modeling

- Transportation model is a special class of linear programming
- As such you need to know:
 - 1. The *origin points* and the capacity or supply per period at each
 - 2. The *destination points* and the required or demand per period at each
 - 3. The *cost of shipping* one unit from each origin to each destination

Transportation Problem

Relevant data of Arizona Plumbing are presented in the following table and chart:

TABLE C.1 Tra	Transportation Costs per Bathtub for Arizona Plumbing					
ТО						
FROM	ALBUQUERQUE	BOSTON	CLEVELAND			
Des Moines	\$5	\$4	\$3			
Evansville	\$8	\$4	\$3			
Fort Lauderdale	\$9	\$7	\$5			

Transportation Problem

Cautions: Be sure that:

- Objective function must be linear (cost of transportation is a constant regardless of the distance).
- Units are interchangeable (units are similar).
- Sum of capacity units must equal to required units (if not you have to add a dummy variable to make a balance).

Transportation Matrix

Figure C.2

- Start in the upper left-hand cell (or northwest corner) of the table and allocate units to shipping routes as follows:
 - 1. Exhaust the supply (factory capacity) of each row before moving down to the next row
 - 2. Exhaust the (warehouse) requirements of each column before moving to the next column
 - 3. Check to ensure that all supplies and demands are met

- Assign 100 tubs from Des Moines to Albuquerque (exhausting Des Moines's supply)
- Assign 200 tubs from Evansville to Albuquerque (exhausting Albuquerque's demand)
- Assign 100 tubs from Evansville to Boston (exhausting Evansville's supply)
- Assign 100 tubs from Fort Lauderdale to Boston (exhausting Boston's demand)
- Assign 200 tubs from Fort Lauderdale to Cleveland (exhausting Cleveland's demand and Fort Lauderdale's supply)

To	(A) Albuquero	que	(B) Boste	on	(C) Clevela	and	Factory capacity
(D) Des Moines	100	\$5		\$4		\$3	100
(E) Evansville	200	\$8	100	\$4		\$3	300
(F) Fort Lauderdale		\$9	(100)	\$7	200	\$5	300
Warehouse requirement	300		200		200		700
Means that the firm is shipping 100 bathtubs							

Means that the firm is shipping 100 bathtubs from Fort Lauderdale to Boston

Figure C.3

TABLE C.2 Computed Shipping Cost						
ROUTE						
FROM	ТО	TUBS SHIPPED	COST PER UNIT	TOTAL COST		
D	A	100	\$5	\$ 500		
Е	А	200	8	1,600		
Е	В	100	4	400		
F	В	100	7	700		
F	С	200	5	\$1,000		
				\$4,200		

This is a feasible solution but not necessarily the lowest cost alternative

