

Damietta University Faculty of Commerce English Program

Production and Operations Management

Second Year, Week 10: 14 April 2020

Compiled and Edited By: Dr. Soliman Rakha

Location Strategies

Location Strategies Transportation Models

Outline

- Transportation Modeling
- Developing an Initial Solution
- The Stepping-Stone Method

- 1. Identify the cell with the lowest cost
- 2. Allocate as many units as possible to that cell without exceeding supply or demand; then cross out the row or column (or both) that is exhausted by this assignment
- 3. Find the cell with the lowest cost from the remaining cells
- 4. Repeat steps 2 and 3 until all units have been allocated

To	(A) Albuquerque	(B) Boston	(C) Cleveland	Factory capacity		
(D) Des Moines	- \$ 5	¢4	100 \$3	100		
(E) Evansville	\$8	\$4	\$3	300		
(F) Fort Lauderdale	\$9	\$7	\$5	300		
Warehouse requirement	300	200	200	700		

First, \$3 is the lowest cost cell so ship 100 units from Des Moines to Cleveland and cross off the first row as Des Moines is satisfied

Figure C.4

From	(A) Albuquerque	(B) Boston	(C) Cleveland	Factory capacity
(D) Des Moines	- \$5	\$4	100	100
(E) Evansville	\$8	\$4	100 \$3	300
(F) Fort Lauderdale	\$9	\$7	\$5	300
Warehouse requirement	300	200	200	700

Second, \$3 is again the lowest cost cell so ship 100 units from Evansville to Cleveland and cross off column C as Cleveland is satisfied

From	(A) Albuquerque	(B) Boston	(C) Cleveland	Factory capacity
(D) Des Moines	•••••••••••••		100	100
(E) Evansville	\$8	200	100	300
(F) Fort Lauderdale	\$9	\$7		300
Warehouse requirement	300	200	200	700

Third, \$4 is the lowest cost cell so ship 200 units from Evansville to Boston and cross off column B and row E as Evansville and Boston are satisfied

From	(A) Albuquerque	(B) Boston	(C) Cleveland	Factory capacity
(D) Des Moines	¢ V		100	100
(E) Evansville	\$8	200 4	100	300
(F) Fort Lauderdale	300 \$9	\$7	\$5 	300
Warehouse requirement	300	200	200	700

Finally, ship 300 units from Albuquerque to Fort Lauderdale as this is the only remaining cell to complete the allocations

Figure C.4

To	(A) Albuquerque		(B) Boston		(C) Cleveland		Factory capacity
(D) Des Moines		μ. L		¢ 4 4	100	€ ≯	100
(E) Evansville) O	200	4	100	¢ •	300
(F) Fort Lauderdale	300 \$	9		\$7		\$ 5	300
Warehouse requirement	300		200		200		700

Total Cost = 3(100) + 3(100) + 4(200) + 9(300)= 4,100

Total Cost = 3(100) + 3(100) + 4(200) + 9(300)= 4,100

