

Damietta University Faculty of Commerce English Program

Production and Operations Management Second Year, Week 11: 21 April 2020 Compiled and Edited By: Dr. Soliman Rakha

Location Strategies

Location Strategies Transportation Models

Outline

- Transportation Modeling
- Developing an Initial Solution
- The Stepping-Stone Method
- Special Issues in Modeling

- 1. Select any unused square to evaluate
- 2. Beginning at this square, trace a closed path back to the original square via squares that are currently being used

(Just move horizontally and vertically)

 Beginning with a plus (+) sign at the unused corner, place alternate minus and plus signs at each corner of the path just traced

- 4. Calculate an improvement index by first adding the unit-cost figures found in each square containing a plus sign and subtracting the unit costs in each square containing a minus sign
- Repeat steps 1 though 4 until you have calculated an improvement index for all unused squares. If all indices are ≥ 0, you have reached an optimal solution.

© 2014 Pearson Education, Inc.

	To		(A) Albuquerque		(B) Boston		(C) Cleveland		Factory capacity
	(D) Des Moines		100 _	\$5		\$4	Start +	\$3	100
	(E) Evansville		200 +	\$8	100	\$4		\$3	300
	(F) Fort Lauderdale Warehouse requirement			\$9	1 00 +	\$7	200	\$5	300
			300		200		200		700
igur			Des Moines-Cleveland index = \$3 - \$5 + \$8 - \$4 + \$7 - \$5 = +\$4						

© 2014 Pearson Education, Inc.

1. If an improvement is possible, choose the route (unused square) with the largest negative improvement index

(Here it's only one negative index, **FA**)

- 2. On the closed path for that route, select the smallest number found in the squares containing minus signs
- 3. Add this number to all squares on the closed path with plus signs and subtract it from all squares with a minus sign

To	(A) Albuquerque		(B) Boston		(C) Cleveland		Factory capacity	
(D) Des Moines	100	\$5		\$4		\$3	100	
(E) Evansville	200	\$8	100	\$4		\$3	300	
		¢ 0	•+	¢7		¢۲		
(F) Fort Lauderdale	+	Ф Э	100	Φ1	200	နာ	300	
Warehouse requirement	1. /	1. Add 100 units on route FA						
	2. 3	2. Subtract 100 from route FB						
	3. /	3. Add 100 to route EB						
007	4. 3	4. Subtract 100 from route EA						

Figure C.7

To	(A) Albuquerque		(B) Boston		(C) Cleveland		Factory capacity
(D) Des Moines	100	\$5		\$4		\$3	100
(E) Evansville	100	\$8	200	\$4		\$3	300
(F) Fort Lauderdale	100	\$9		\$7	200	\$5	300
Warehouse requirement	300		200		200		700

Total Cost = (100) +

Figure C.8 MC - 12

© 2014 Pearson Education, Inc.

