

Damietta University Faculty of Commerce English Program

Production and Operations Management Second Year, Week 11: 28 April 2020 Compiled and Edited By: Dr. Soliman Rakha

### **Location Strategies**



### Location Strategies Transportation Models



## Outline

- Transportation Modeling
- Developing an Initial Solution
- The Stepping-Stone Method
- Special Issues in Modeling



# **Special Issues in Modeling**

- Demand not equal to supply
  - Called an unbalanced problem
  - Common situation in the real world
  - Resolved by introducing dummy sources or dummy destinations as necessary with cost coefficients of zero

### **Virtual Trial for Dummy Variable**

Total Cost = 250(\$5) + 50(\$8) + 200(\$4) + 50(\$3) + 150(\$5) + 150(0)= \$3,350

| From                          | (A)<br>Albuquerque | (B)<br>Boston | (C)<br>Cleveland  | Dummy | Factory capacity |  |  |  |  |
|-------------------------------|--------------------|---------------|-------------------|-------|------------------|--|--|--|--|
| (D) Des Moines                | 250 <sup>\$5</sup> | \$4           | \$3               | 0     | 250<br><b>↑</b>  |  |  |  |  |
| (E) Evansville                | 50 \$8             | 200 \$4       | 50 <sup>\$3</sup> | 0     | 300              |  |  |  |  |
| (F) Fort Lauderdale           | \$9                | \$7           | 150 \$5           | 150 0 | 300              |  |  |  |  |
| Warehouse<br>requirement      | 300                | 200           | 200               | 150   | 850              |  |  |  |  |
| New<br>Des Moines<br>capacity |                    |               |                   |       |                  |  |  |  |  |

© 2014 Pearson Education, Inc.

# **Special Issues in Modeling**

#### Degeneracy

- To use the stepping-stone methodology, the number of occupied squares in any solution must be equal to the number of rows in the table plus the number of columns minus 1
- If a solution does not satisfy this rule it is called degenerate

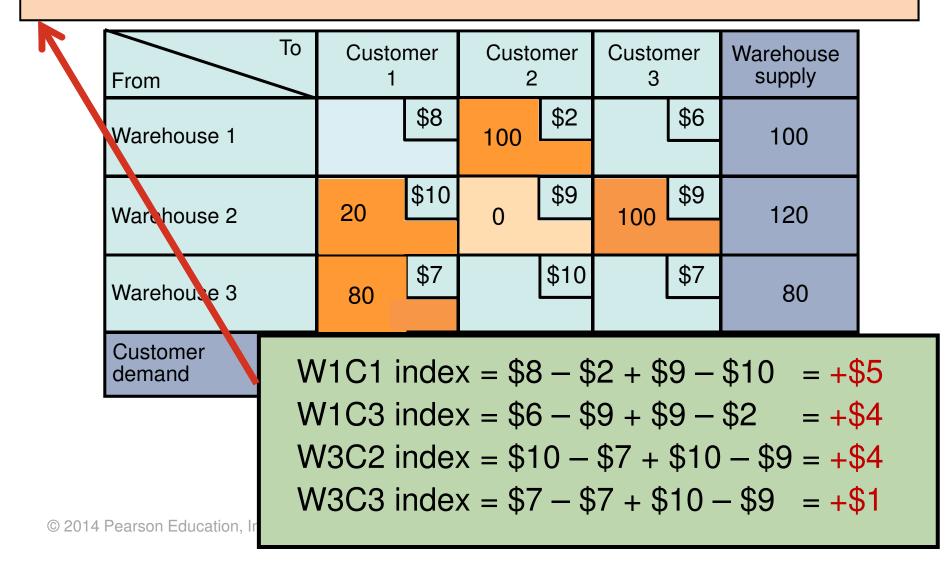
Test of degeneracy in our example: Occupied squares = (No. Columns + No. Rows) – 1 = 6 - 1 = 5, *was no degeneracy* 

Total Cost = \$8(100) + \$9(100) + \$9(20) + \$7(80) = \$2,440

|                                                                                                                                                                            | From               | То          |   | Customer<br>1 |     | Customer<br>2 |    | mer | Warehouse<br>supply |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------|---|---------------|-----|---------------|----|-----|---------------------|
|                                                                                                                                                                            | Warehouse          | Varehouse 1 |   | \$8           |     | \$2           |    | \$6 | 100                 |
|                                                                                                                                                                            | Warehouse 2        |             | 0 | \$10          | 100 | \$9           | 20 | \$9 | 120                 |
|                                                                                                                                                                            | Warehouse          | Warehouse 3 |   | \$7           |     | \$10          | 80 | \$7 | 80                  |
|                                                                                                                                                                            | Customer<br>demand |             |   | 100           |     | 100           |    | C   | 300                 |
| Initial solution is degenerate<br>Place a zero quantity in a proper unused square<br>and proceed computing improvement indices<br>Proper unused cell meets two criteria!!! |                    |             |   |               |     |               |    |     |                     |

| To          | Customer<br>1                                        | Customer<br>2                | Customer<br>3           | Warehouse<br>supply         |
|-------------|------------------------------------------------------|------------------------------|-------------------------|-----------------------------|
| Warehouse 1 | 100 \$8                                              | \$2                          | \$6                     | 100                         |
| Warehouse 2 | 0 \$10                                               | 100 \$9                      | 20 \$9                  | 120                         |
| Warehouse 3 | \$7                                                  | \$10                         | 80 \$7                  | 80                          |
|             | V1C2 index<br>V1C3 index<br>V3C1 index<br>V3C2 index | x = \$6 - \$<br>x = \$7 - \$ | 9 + \$10 -<br>7 + \$9 — | - \$8 = -\$1<br>\$10 = -\$1 |

Total Cost = (100) + (100) + (9(20)) + (7(80)) = (1,940)


| From            | To                                                                                                                               |     | Customer<br>1 |     | Customer<br>2 |     | mer | Warehouse<br>supply |  |  |  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------|-----|---------------|-----|---------------|-----|-----|---------------------|--|--|--|
| Warehouse 1     |                                                                                                                                  |     | \$8           | 100 | \$2           |     | \$6 | 100                 |  |  |  |
| Warehouse 2     |                                                                                                                                  | 100 | \$10          | 0   | \$9           | 20  | \$9 | 120                 |  |  |  |
| Warehouse 3     |                                                                                                                                  |     | \$7           |     | \$10          | 80  | \$7 | 80                  |  |  |  |
| Customer demand |                                                                                                                                  |     |               | 100 |               | 100 |     | 300                 |  |  |  |
|                 | This solution is also degenerate<br>Place a zero quantity in a proper unused square<br>and proceed computing improvement indices |     |               |     |               |     |     |                     |  |  |  |

|        | From                                        | To     |                               | Customer<br>1 |                    | Customer<br>2           |                  | mer        | Warehouse<br>supply                                             |   |
|--------|---------------------------------------------|--------|-------------------------------|---------------|--------------------|-------------------------|------------------|------------|-----------------------------------------------------------------|---|
|        | Warehouse 1                                 |        |                               | \$8           | 100                | \$2                     |                  | \$6        | 100                                                             |   |
|        | Warehouse 2                                 |        | 100                           | \$10          | 0                  | \$9                     | 20               | \$9        | 120                                                             |   |
|        | Warehouse 3                                 |        |                               | \$7           |                    | \$10                    | 80               | \$7        | 80                                                              |   |
| © 2014 | Customer<br>demand<br>Pearson Education, Ir | V<br>V | /1C3 i<br><mark>/3C1 i</mark> | nde:<br>nde:  | x = \$6<br>x = \$7 | 6 — \$<br>7 <b>— \$</b> | 9 + \$<br>7 + \$ | 9 —<br>9 — | \$10 = +\$5<br>\$2 = +\$4<br><b>\$10 = -\$1</b><br>- \$9 = +\$3 | 1 |

Total Cost = (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) + (100) +

| From                                                                                                                             | То | Custo<br>1 | omer | Customer<br>2 |      | mer Custom<br>3 |     | Warehouse<br>supply |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|----|------------|------|---------------|------|-----------------|-----|---------------------|--|--|
| Warehouse 1                                                                                                                      |    |            | \$8  | 100           | \$2  |                 | \$6 | 100                 |  |  |
| Warehouse 2                                                                                                                      |    | 20         | \$10 | 0             | \$9  | 100             | \$9 | 120                 |  |  |
| Warehouse 3                                                                                                                      |    | 80         | \$7  |               | \$10 |                 | \$7 | 80                  |  |  |
| Customer demand                                                                                                                  |    |            |      | 10            | 100  | 100 300         |     |                     |  |  |
| This solution is also degenerate<br>Place a zero quantity in a proper unused square<br>and proceed computing improvement indices |    |            |      |               |      |                 |     |                     |  |  |

Since all indices are positive, thus, this solution is the optimal solution with a total cost of \$1,860



