6 Chapter 6: Differential Analysis of Fluid Flow

When details of fluid flow are important, we use differential analysis. We look at an
infinitesimal cv as different from a finite cv that we used in our integral treatment.

6.1 Detailed kinematics of fluid flow

Consider a very small fluid element (Ax Ay Az) in a flow (say, a Lagrangian observation).
Let the flow have some finite viscosity so that shear forces are also present in addition to
pressure and body forces. As the element moves form one location to another, not only
does the element occupy a new location but its velocity may be very different (the velocity
components may be very different from those at the previous location). The pressure
at the new location may be very different from the value at the previous location. The
observed effects cannot be explained by a simple translation of the element and we have
to ascribe the changes as being due to various stresses experienced by the fluid element
along its path. A mere translation of a fluid element cannot result in a stress, since by
a change of coordinate system the element can be brought to rest. Similarly, a uniform
rotation or solid body rotation of a fluid element cannot result in a stress since, with
respect to the rotating system, there is no relative motion. Thus the effects of stresses
that we observe in a fluid flow must be the result of distortion or deformation of the fluid
element. These distortions may be volumetric associated with linear deformations in
coordinate directions as well as angular deformations associated with shape deformation
in an angular sense. So to describe the motion of the fluid element, in addition to
Translation, we have to consider Rotation, Angular deformation, and Volumetric
deformation.

Translation is linear displacement from location, say, (xg,yo,20) to (z,y;, z). If
there are no velocity gradients at all in a flow, then a fluid element in motion will simply
translate from one location to another. If there are no velocity gradients at all, then
there are no accompanying stresses in the flow field. The fluid element in such a case
will retain its shape. In Rotation, the orientation of the element as shown in the figure,
where the sides of the element are parallel to the coordinate axes, may change about any
one (or all three) of the coordinate axes. Again there is no distortion in shape. Angular
deformation involves a distortion of the element in which planes of the element that
were originally perpendicular are no longer perpendicular. Volumetric deformation
involves a change in shape without a change in the orientation of the element and here,
planes of the element that were originally perpendicular remain perpendicular.
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We now have to quantify these phenomena in terms of measureable flow quantities
such as velocity. Eventually relate the effects of these phenomena to applied forces wheih
cause the motion. Otherwise we cannot analytically study the flow. Translation of a
fiuid element is easy to understand and note. The others are not straightforward.

6.1.1 Rotation, Angular deformation, and Volumetric deformation

A fluid element may undergo rotation due to angular momentum in the flow field. For
a solid body, we measure rotation by noting the angular displacement of a line on the
plane of rotation from a reference. However, a fluid element is deformable and therefore
to measure rotation, we choose to consider the the average rotation of two lines of
the element that were mutually perpendicular at the beginning of the flow. Figures (a)
and (b) shows a plane fluid element of sides Az and Ay that lies on the & — y plane.
Consider Figure (a). The axis of rotation is the z axis and OA and OB are the two
initially perpendicular lines on the fluid element. The velocity components at O are u
and v. These are increased at 4 and B to quantities expressible through Taylor’s series
and as indicated in the figure. The OA and OB shall move on to the positions OA’ and
OB’ owing to the net velocity differences at A and B over the components at 0. These
constitute the angular deformation of the fluid element. Over a time dt the displacements
are

e (i

AL = ( - ﬂr) dt (292)
b (DU

BE = ( 5 &y) dt (293)

The corresponding angles of deformation per unit time are obtained by dividing the
respective arm lengths. Therefore,

e dil o .4.4'fﬂ1 e (gfﬂ,r) dt o du L ;
dfy = 3:1211 = '.}:lﬂ e Jﬂ}; . ( anti — clockwise), (294)
Similarly, df, = %,{c!nckwise} (295)



We now adopt a convention. Anti-clockwise rotation is positive. The average angular
velocity of the fluid element about the z axis in Figure (a) is

Liizt . 1 {fOv Ou
wz—i(d€;+dﬂg)_§(£—a)

For a three dimensional element, the rotations about the z and y axis are similarly
obtained as, and we list the three as:

1 /v Ou
Wy = 5 (E - B_y) (296)

1 [dw v

1 /0u Ow
Lr.?y = E (E — 3&-) {293}
and,w = w;i+ wyj+w.k (299)

In pure rotation, the fluid element, as shown in Figure (b), will rotate about the z
axis as an undefurmed element such that df, = df,. (Forced vortex). But, for pure

rotation, df, = -— dnd it is anticlockwise. Therefore, for pure rotation, g—ﬁ = ﬂy’
and w, = & = ”" Next, let us look at general angular deformation. We see from the

Figure (a) that, in addltmn to the rotation associated with derivatives ﬂ; and &” , these
derivatives may also cause the element to undergo an angular deformation and hence a
change in shape. The change in the right angle formed by the lines OA and OB due to
such angular deformation, (df, — df,), is called the shearing strain in the = — y plane,
Y=y- The rate of angular deformation is the rate of decrease of the angle between lines

OA and OB. (dﬂ: - dﬂg) is called the rate of shearing strain or the rate of angular
deformation, 4;,. Thus,

. v du
Tay = (E ¥ '@) = Ezy = €yz, (300)

where the € notation has been included since many people use that instead of 4 % to denote
rate of shearing qtram Similarly,

; d du
Yoz = ( - 33) = Cyz = €z, {3{}1)
i":z‘ = ('g_: i gi;) = €xr = €r;. {302)

* We see that angular deformations are associated with shear strain rates. We would
expect the shear strain rates to arise as a result of shear stresses.

Clearly, the rate of shearing strain is seen to be zero for pure rotation (for example, solid
body rotation).
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6.1.2 Vorticity, Irrotational Flow

We note from Vector calculus that, 2 w = ¥V x V. It is customary to set 2 w =
V x V =(, and ( is called the Vorticity of the flow. When ¢ = 0, the flow is said to
be Irrotational. Therefore, for an irrotational flow,

_@E = o 303
& -~ by (303)
dw v
3; = (304)
du dw
% T 95 (305)
Irrotationality of a two-dimensional flow in the z — y plane would mean:

1 (v Ou

“”“E(a_a_y)‘ﬂ (306)

By
satisfied when (1) is true. Condition (1) is more stringent, and is satisfied in a rectilinear

motion of an inviscid fluid. When an inviscid fluid is following in a curvilinear path,
condition (1) is not satisfied but condition (2) may hold (Free vortex).

This could be satisfied if (1) 2 = ¢ = 0 or if (2) (%~ 2) = 0. Condition (2) is

e Volumetrie deformation

During linear deformation, the shape of the fluid element. described by the angles at its
vertices, remains unchanged, since right angles continue to be right angles. The fluid
element will change length in the z direction only if gg is non-zero. Similarly for changes
in the y and z dimensions, £ and £% must both be non-zeros. But, Du, %;— and 22 are
the components of longitudinal rates of strain in the z, y and 2 directions, respectively.

This can be seen as follows: Define,

Rate of change of Volume

Rate of Volumetric strain = (307)
Volume
1 d(Av) 1 d(Az Ay Az)
Av dt — Av dt (308)
1 d(Az Ay Az) 1 d Az
= — A
Av. & By VAT i) (809)
But, consider for example, the z direction. From Taylor’s series,
i
A=l — a—;ﬂ.m (310)
A
4y Also, u|z4ar —ul. = d—[;ﬁi] (311)
. d(Ax) du
e = — 1
u{ AX g Therefore, o Az (312)
X X+4x
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Similar terms will apply for the y and z directions. Thus, from Equations 309 and 312,

Rate of Volumetric strain = QE + {h_ + i =V.-V (313)
dr  dy 0z
The quantities gg, gL:, %—‘: cause a linear deformation in a fluid element. We see that these
derivatives denote rates of strain in normal directions or normal strain rates. Formally,
we set
du
2 (EE) = €zz, [31‘”
v
2 (%-) = €y (315]
dw
21 — —N 16
(32 ) S (319)

The concepts behind Equations 300, 302 and 316 must be carefully understood.

e We see that linear deformations are associated with normal strain rates. We would
expect the normal strain rates to arise as a result of normal stresses.

Now, V - V represents the change of volume per unit volume of the fluid as the fluid
element moves from one location to another in the flow field. If there is a volume change,
then there has to be a density change. But, for an incompressible fluid, the density
change in the flow field is zero. Therefore, for an incompressible fluid, independent
of whether the flow is steady or not, V.V = 0. Now we are ready to develop
the conservation equations in differential forms. We shall concentrate on conservation
of mass (continuity), conservation of linear momentum, and conservation of mechanical
energy (isothermal flows).
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6.2 Conservation of mass

The control volume is infinitesimally small and is about a point P(z,y,z). u,v,w are
velocity components of fluid velocity at P. With reference to the figure, remembering
that flux denotes quantities per unit time and per unit area,

Mass flux entering cv in x — direction = pu (317)

Mass flux leaving cv in x — direction = .p u+ %lﬁr] (318)

Area of either x face = (-&y. Az) . (319)

Net mass leaving cv per unit time in x — direction = -y A IJ Ay Az(320)

Net mass leaving the cv per unit time from all directions is given by

2(pu) 2 (pv) 8(ow) . 1 A
[———ér—- A ;1_:] Ay Az + [——ay— Ayl Az Az + P Az| Az Ay. (321)

The net mass leaving the control volume must cause the mass in the cv to decrease. The
rate of decrease of mass in the cv is

AoV _ _yy B0 _ . p 1 0p
= Iﬂ,at— iaﬂy&.zﬁ. (322)

since the cv is non-deformable. From Equations 321 and 322,

d(pu)  d(pv) d(pw) _ dp
AR A e (823)
_ _9 9
VoV = -2 (324)

9
VA(VA+p(VV) = —= (325)
2§+V+[Vp)+p{v*\f} =30 (326)

Therefore, it follows that for an incompressible fluid, independent of whether the fluid
flow is steady or not, V - V = 0. We had already seen this result. In general, fluid flows
must satisfy Equation 326. The equation 326 will apply regardless of the choice
of the coordinate system— rectangular cartesian, cylindrical, spherical etc.
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6.2.1 Steady, incompressible, planar (twn—dimensianal} flow and continuity
equation

This is one of the simplest types of flow of practical importance, V = V(z, y). Therefore,
V -V = 0 becomes,

du v
Introduce a function 1(x, y) such that
o 9
u= 7 andy=—=- (328)

The equation 328 shows that function v automatically satifies 327 and we can represent
u(z,y) and v(z,y) by just one function ¥(x,y). This function is is called the Stream
function. Whenever the stream function formulation is used to describe a 2D Aow
problem, the continuity equation is automatically satisfied and we need not worry about
it. However, the order of the accompanying equations will increase. We have to deal
with that. A further advantage of the use of v is that ¥ = constant denotes various
streamlines in the flow for different values of the constant. How so? Recall the equation
for a streamline in a 2D flow:

dy v
Ty (329)
udy —vder = 0 (330)
d ay
==, s —dr =
By dy + ﬂm(m 0 (331)
/
But, @dy -+ %d.r = di, from chain rule (332)
Ay Ox
Along a stream line, diy = 0 (333)
Therefore, along a stream line, 1 = constant (334)

The actual numerical value associated with a particular stream function and the stream-
line that it denotes is unimportant. But the difference between two stream functions in
a flow is a measure of the quantity of fluid flow passing between the two streamlines per
unit width perpendicular to the plane containing the streamlines. Flow never crosses a
streamline. Looking at the figure, consider the flow bounded by streamlines with 1 and
¥+ dy for the stream functions. Let dg be the inflow crossing any arbitrary surface AC.
This must equal the nét out flow through surfaces AB and BC.

dq = udy— vdr (335)
a1l N,
= -aTde-i- -(:Ed::, (336)
= dif (337)
2
q = / dip =y — 1y (338)
w1
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6.3 Conservation of linear momentum for a viscous fluid: The
Navier-Stokes equation

In a viscous fluid, evaluation of the surface forces are considerably more complicated.
There are normal stresses similar to pressure, but they may not be the same in all
directions. There are shear stresses whose directions are parallel to the surfaces on which
they act. Look at the figures. Notation : 7,, denotes stress acting in the z direction on a
surface whose normal points in the y direction. This is therefore a shear stress. Similarly,
04, indicates a normal stress. Outward drawn normals indicate positive directions.

dF,, dFy _ _ o 9Fs

lim T T im
ddz=0 dA, dA,—0 dA;

"J'-[.I' 1 ry = f339]

(7]
> dA,~0 dA,

To develop equations, we set the stresses at the center of the infinitesimal fluid element
equal to g,., Ty, T4y, ... and so on.

The net surface force in the & direction for a unit depth in the z-direction is:

Horse) a[:?'u.r]
£ dydz + (;'

and if three dimensions are taken into account, for the net surface foree in the = direction
we would obtain,

—dzdy, (340)

J
f-‘”. Jl’jl’ Ff.lf.’... {. ’.I'F.} di,l' f._ E .I}

dr oy 2

dzdxdy. (341)

The net body force in the r direction is p dedydz £, where £, is the net body force in
the z direction per unit mass of fluid. The net total force in the r direction will give
rise to acceleration in the x direction. We know that the acceleration component in the
r direction is %‘—; noting that V = iu + ju + kw and ”’, is the material derivative with
the observer flowing along with the fluid. So we have to equate the net force in the
direction to the acceleration imparted in the x direction to the fluid element of mass

p dadydz. Therefore, we obtain,

'y,
o dredyedz Er =

J
NOxx) dydrdz + oA ”r}rirdufiz + G I}d:ri;f:riy + p drdydz f,.

[ iy dz

-

(342)
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e More details on the devlopment of the net surface force in the x-direction,

{a”}dyd:m'z - Fﬂ“]d dydz + al:a*r}rfzdwiy (375)

To obtain the net surface force in the x-direction dF,, we must sum the forces in the
x-direction. Thus, from the figure showing the stresses in the x-direction

aar:: dz 3!‘7!1 dr
dif; ) = (ﬂrﬂr + p ) dydz — (a,, vy ) dydz (376)
Orys dy Oz dy 2!
+ ( Tyx + —=— By 2 ) drdz — ( Tyz D )drdz (377)
Oz dz 31":1. dz
+ (T:; + e ) drdy — ( Tax 5 2 )drdy (378)
Upon simplifying,
a[“ﬂ) O(ryz) 0(7-;) -
dF,. = dedydz + —— 7 ydrdz 3 dzdzdy, (379)
okt i 00ss) , rye) . Or=s)
Trx a Tu','v Tzz
= dydz.
dF,. + dF,. (p gz + o + c'l'y - 5 ) dxdydz (380)
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In 342, We can divide throughout by dxdydz to obtain the equation applicable for the
z direction. Now, remember we are using the stress system in three dimensions shown in
the determinant and we are also relying on the fact that the state of stress at a point can
be described completely by specifying the stresses acting on three mutually perpendicular
planes through the point (principal planes and principal axes). Thus, we can generalize
342 to three dimensions to obtain:

Du at ﬂ'{ﬂﬂ) e ﬁ{rﬂ-} i3 a{f:.t]

? Dt dr dy 9z P £ 950
Dy () , B(oy) () :

“Tr o P dy T8 TP fy (9¢t)
_ﬂ_w ) E}{ Trs :| a{ 'ry:] a{ﬂ'::} /

Py T SRkt f.. (345)

The above differential equations apply for any fluid motion satisfying the continuum
assumption. However, we have to link the stresses to velocity and pressure fields. Now.
of the nine stress elements, o,.., Oyys Ozzy Tays Tyzs Tazs Texy Tyz, Tz ONlY six are independent,
because of stress tensor symmetry. Thus, we can use the fact, Tor = oy Tag = TaziTust=
T:y to simplify things. From our discussions of rate of shear strain and rate of normal
strain, we know that shear stresses must be proportional to rates of shear strain and
normal stresses must be proportional to rates of normal strain.

In particular, for a Newtonian fluid, the stress-strain relationship on the basis of
experimental observations and meaningful conjectures may be written,

dv  du wik
Tay — Tye = H (5 T IL'_T}) {-i-l{}}
cw av .
T =Ty = M (a -+ E) I::-}l?l:l
d Jur
Tee =Tez = H (—: + %) (348)
= ppipe 2 o (319)
Yeg: = ! -ﬂ?}:i.‘ 3 ! :
Gy = —p+ EJ‘I@ - ::'-' nv-v (350)
o dy 3
g L
O = =D+ :Efld__t = :‘—; ,u\?V {I:I:Tij
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where the coefficient of proportionality between the stress and the rate of strain is the
dynamic viscosity of the fluid y. In the above, p represents the “average pressure” and
may be shown to be given by

1
P=—3 (0 + 0y +0:) =pu - AV -V, (352)

where py; is the thermodynamic pressure and is the one related to the density and tem-
perature by the thermodynamic equation of state and ) is called the second coefficient
viscosity. A has the same dimensions as p. In the development and application of fluid
mechanics up to the present time, the second coefficient of viscosity plays much less of a
role than the first. For incompressible fluids the term in ) disappears completely and for
compressible fluids it is of significance mainly in a few specialized problems where very
large velocity and temperature gradients may oceur such as in the analysis of the shock
wave structure or perhaps in the study of electric field effects on lames (I say 'perhaps’
in the latter case because I don’t know for sure if it is important but it could be) or
in extreme situations invoving polyatomic gases. Anyway, few direct measurements of
are available. Still, the distinction between the thermodynamic pressure and the average
pressure must be appreciated and this is not always carefully made in books. With the
expressions for the stresses introduced into them, the momentum equations become:

Du  dp 8 ( u\ 28 i} Ju @) a { (au Ow
T _é;+ ar (#E:') EE[Fv V}+3y {‘u (ay i dx }+83 “\ 3z * dx

(353)

Dv  dp 0 ( dv) 28 a (ﬂu gi)} d (ﬁ i @)
T -ﬁ-‘-zay (ﬂﬂ_y) 30y Wy V]+ﬁr {'”' dy  Or 5z " dz = Oy

(354)

D dp @ ﬂ'n:) 240 a { (ﬂu ﬂur)} 8} { (E}r dw

e M Joaeoll e e T o H et LY S el S (AN T
AT 0z +-E.'z (.u dz/ 308z i }+6':e: Bil%E - dx +E}‘y Moz ™ dy

(355)

These three equations are the three components of the Navier-Stokes equation. These
equations are greatly simplified when applied to an incompressible flow ( W -V = 0) and
with constant viscosity. Then these equations reduce to:

du  du  du Au ap Fu  FPu 3“*.-:) A
—_— —_— r—_— Y — = —_—— —_— — 4 — 1. _!; {;
L (ﬂa‘ 7 "o il iy i dz ) dr i (E?.::'*’ dyt a2 ol (g0}
du dv du dp Pv  Fv v .
_— _— } — = e oy~ M i a:
P (E}E iy Hﬂ'i.‘ 45 E]y 15 “'IE;;) ay +p (Eh-'." 1 Ayt 922 + .IF,IJ' (357)
dw  dw  Ow dw dp FPuw Pw & u:) §=
— — e Yo — | = —— —t ==+ 5=|+pf: 358
g (E:H “or T Ay oz ) az " F (ﬂf dy? 022 P \28a}
We can write these three component equations eompactly as:
2 {g +(V-V) V} =-Vp+uVV+pf (359)
or,
p) k
I IDT =—-Vp+puVV+pf (360}
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e Initial and Boundary conditions

e The Navier-Stokes equation , 360,

p {% +{v*v)v} = —Vp+ uV2V +pf,

requires prescribed initial and boundary conditions. Initial conditions are dictated by
the prevailing flow conditions at the start of the investigation or study. The boundary
conditions must be carefully prescribed.

For flow over a solid surface, on the basis of experimental results, the tangential and
normal components of the fluid are seen to be equal to the corresponding components
of the surface itself. In other words, there is no relative motion or “slip” between the
fluid and the solid. If the solid is at rest, then, for the fluid V is zero. If the surface is
moving, then at the surface, the velocity of the fluid is equal to the velocity of the surface
motion. However, when the free path of the molecules of the fluid becomes appreciable
when compared to an important physical dimension of the body over which or through
which the flow occurs (e.g., Rarefied gas flow at very high altitudes), the difference in
tangential velocities between the fluid and the solid is not zero but is proportional to
the surface shear stress. At a free surface or interface between two immiscible fluids, the
shear stress must be continuous. If an appreciable surface tension exists at the interface,
the normal component of the stress vector is discontinuous by an amount

Ap=o (-1-+l) (361)

Ll I

as discussed before,

The Navier-Stokes equation is difficult to solve, especially so when the flow is unsteady
and/or fully three-dimensional. In a small number of cases, under some restrictive as-
sumptions or because of the special nature of the physical problem which admits of
simplifying assumptions, analytical solutions are possible. We will study a few of those
cases soon. These days, many solutions for realistic formulations are developed employ-
ing extensive numerical schemes. With Super computers, we have made some progress,
but fully 3-D Direct Numerical Simulation is still a very formidable task.

However, based on a thorough physical understanding, reasonable approximations
may be introduced to develop simplified mathematical structures governing the momen-
tum transport, and the resulting equations may be solved to gain a deep understanding
of the flow field. Together with experimental observations, great progress may be made
by such procedures. For example, following Prandtl, many flow fields may be divided into
two regions, one close to the surface or boundary, the other involving the remainder of the
flow. In the region close to the boundary, viscosity effects are deemed important, but the
main portion of the fluid is regarded as inviscid (and perhaps, additionally,irrotational).
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“Perfect” fluids do not actually exist aside possibly from liquid helium at temperatures
near zero. Nevertheless, under certain conditions the behavior of an actual fluid away
from a boundary approaches that of the “perfect” fluid. So we need to clearly understand
an inviscid, irrotational, Incompressible flow and this will enable us treat a significant
region of the flow field away from the boundary and later we may couple (or match) it
with the treatment of the boundary layer. In the boundary layer itself, on the basis of
the assumption of a physically thin layer, several approximations may be made in the
process of the development of the viscous momentum equation which were not possible
when we developed the N-S equation. We will learn about these soon. First, let us look
at Inviscid, Trrotational, Incompressible flows.

85



6.4 Inviscid, Irrotational flows and the Velocity Potential

Recall that for a flow field with rotation,
| 2w=VxV=( (362)
and when,
VxV=0, (363)
the flow is said to be Irrotational. Therefore, for an irrotational flow,
@__@ Ow dv Ou _ow
or 8y’ 8y @8z 0z oz
Now, from Vector calculus, for any scalar function ¢(x,y, z,t) with continuous first and
second derivatives,

(364)

V x V¢ = 0. (365)

Compare equations 363 and 365. It follows that for an irrotational flow we can always
write,

V =Vg¢, (366)
Therefore, 5 5
_ 99 _do 39
u= o U_ﬂy’ w= 2. (367)
For a two-dimensional irrotational flow, we need to consider,
a
=7 o0 (368)

U= gy U= =
or dy

Next consider a two-dimensional incompressible flow. Recall that we had introduced
Y(x,y) as the stream function for such a flow and shown that it automatically satisfied
the continuity equation ¥V - V = 0. The ¥(z,y) as given by 328 was such that

7 e

Y= -5';.! and v = =% (369)
Let such a two-dimensional, incompressible flow be irrotational as well. Then we have,
0o dy  dp
et SRt P T 7
5955 and 5% bl (370)

The equations given in 370 are known as the Cauchy-Riemann equations. These functions
are “Harmonic”. We can see that more explicitly by introducing the definitions of ¢ and
i into the continuity equation and the irrotationality condition, respectively,

&’¢ , 0% >y %
é?-l-ai—ﬂ, and E}}?+Fb’2—u (371)

* We recognize the equations in 371 as forms of Laplace’s equation. Any function ¢
or ¢ that satisfies Laplace’s equation represents a possible two-dimensional, incom-
pressible, irrotational flow field.
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We should remember that physically a fluid flow may follow a straight
(rectilinear) path or an arbitrary curvilinear path. In either case, the flow
may be, from our definition, “rotational” or “irrotational®. Our definition
of “rotationality” implies that the angle between two intersecting lines on a
fluid element continues to change as a result of tangential stresses. Tangential
stresses arise as a result of viscosity. Therefore, viscous fluid motion is “ro-
tational” whether the motion is straight or not. On the otherhand inviscid
(1= 0) flow may be “irrotational” or “rotational”. The rotationality may be
introduced into an inviscid flow by external work interaction (forced vortex
or rigid body rotation) or heat transfer. A free vortex (swirling motion of
the water as it drains from a bath tub) is irrotational except at the origin
or center. Thus for an irrotational flow all the three: friction, external work
input and heat transfer should be absent. This is the criterion.

e Orthogonality of the lines of constant v and ir)

In a 2-D flow, along a given streamline, the stream function i is a constant, and
therefore, di) = 0. This means,

N )
dyy 3:.':d$+ a dy =0 (372)
—vdr +udy = 0 (373)
dy v i
:TIEI‘I':E = = (slope of streamline) (374)
On the otherhand, along a line of constant ¢, d¢ = 0. This means,
do do :
dp = E}—;d:': “+ a—yrfy =f] (375)
udr+vdy = 0 (376)
dy U h .
—|¢=e = —— (slope of potential flow line) (377)
dx U

‘Therefore, from, 374 and 377, lines of constant 1 and ¢ are orthogonal at any given
point. These lines form an orthogonal network. When such a network is formed, from
the spacing of the » and ¢ lines velocities can be computed, and the pressure may then
be determined from Bernoulli’s equation. Since there is no flow through any of the
streamlines, such as iy or 14, any one of them could also be considered to be a possible
solid boundary. This feature helps in the graphical analyses of irrotational flow fields.

6.4.1 Representation in Polar coordinates

Recall that in cylindrical coordinates, V = i, & + gl & + i, 2. The stream function,
i(r, 0, t) is defined such that,

194

d
14:%%=a—-‘f, and, Vg=—-3;—;aﬂ (378)
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6.4.2 Concept of Circulation and Irrotational Flow =X

Circulation in fluid mechanics is defined as the line integral of the tangential velocity
component of a fluid flow about a closed curve that is fixed in the flow. For example, in
a 2-D flow field, it may be noted that each streamline will intersect a closed curve fixed
in the flow at some angle a, and thus the component of velocity along the closed curve
at the point of intersection is |V|cosa = V cosa = tangential component of velocity,
Then, we define an element of circulation dI” and cireulation T by:

dl'=V:dS = Vcosa Sense ! (379)
antc
[ = $V.as £ thkorize  (380)

¢ indicates that the integral is to be taken once around the closed curve and the direction
convention is counterclockwise. Clearly, calculation of ecirculation around an arbitrary
curve in a flow field is generally a tedious step-by-step integration but for circles and
squares it is easy. For example, consider the closed curve which is a square as shown. To
calculate, proceed from A counterclockwise.

dl' = (Mean velocity along AB) Az + (Mean velocity along BC) Ay
— (Mean velocity along CD) Az — (Mean velocity along DA) Ay (381)

Ud 1+ Up U+ Uo
= |— | Az -

L Ue +Up P o Y4+ ¥p ﬂy {382]
2 2
— = du = fu p du
Now, ug =u, up=u+2Az, uc=u+ AT + 7 D,
ug=u—|—g—;ﬂ?1 va=v, vg=v+ PAz,
v = v+ EAT + g-fﬁy. vp=v+ g—;&y. Therefore,
dv  du
dl' = | — — Az A 383
(ﬂx ay) y (383)

in which AzAy is the enclosed boundary. Therefore,

drl’ dv  Ou
Az Ay (E R ﬁ) =
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Here, we recognize
a —(ﬁ—g‘-")—g =z— t of Vorticit 385
Azdy \3z oy = : = 2 — component of Vorticity . (385)

Therefore, we conclude that vorticity component denotes the differential cir-
culation per unit area enclosed. So, Vorticity is some measure of the rota-
tional aspects of the fluid elements as they move through the field of flow. If
Vorticity is absent, the flow is Irrotational. Where the flow is irrotational, the
circulation is zero as well. Now, an entire flow field need not be either rota-
tional or irrotational. Actually flowfields may possess separate zones of both
rotational and irrotational flows. This last feature is an important feature
enabling the development of boundary layer theory.

6.4.3 Examples of Potential Flows

e A Uniform ﬂaﬁr

In a uniform flow field, the magnitude and direction of the velocity vector are constant
throughout the field. Consider a uniform flow parallel to the z axis in the positive
x direction. This flow satisfies the continuity equation and the irrotationality. Here,
u = U, and v = 0. Therefore, ¢ = Uy and ¢ = Ut.

For a uniform fow of constant magnitude V', inclined at an angle o to the 2 axis,
v = (Vceosa)y — (Vsina)z and ¢ = (Vcosa)r + (Vsina)y. T = 0 around any closed
curve, i

| |
_— — - 4 ¢=¢
3 ip |
Dot v 1 T"x f
X I il usoe
— —_— ! 1 J = 1
b=k, §=0 $=k,
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e Source and Sink flows

A simple source is a flow pattern in the zy plane in which the flow is radially outward
from the z axis (origin) and symmetrical in all directions. If the flow moves radially
inward, the pattern is called a sink. Sources and sinks can be used to approximate some
aspects of real flows at points away from the origin. Due to the radial geometry, we
shall use cylindrical polar coordinates to analyze source and sink flows. The angle @ is
measured positive in the anticlockwise direction. We have £ = recos 0, y = rsin#, and
z* + y* = r. First consider the source.

Let m be the volume flow rate, emanating from the line (z-axis) per unit depth. This
is called the strength of the source. At any radius, r, from the source, since the flow is
purely radial, the tangential velocity vy is zero; and, the radial velocity, v, is the volume
flow rate per unit depth, m, divided by the flow area per unit depth, (27r)(1) = 2nr.
Therefore, for a source,

m
Up = E‘J; [385]

Then, .
_ g9 m o _1d¢ _ Xr
D ™ et and La—_rﬁ—-ﬂ (387)

Therefore,
m

¢=—Inr (388)

27
The equipotential lines (¢ = constant) are therefore concentric cireles centered at the
origin. If m is positive, the flow is radially outward, and we have a source flow. If m is
negative, the flow is toward the origin, and we have a sink flow. The stream function for
the source may be obtained from

1y m ) m
—— = — g — =10, h= —@,
rofd 2xr’ s Jr 05 =y 27 (869

The streamlines (1) = constant) are radial lines. At the origin, r = 0, the velocity
becomes infinite, and this is physically meaningless. The reason for this is that we have
assumed that a physical fluid flow with volume flow rate m to emanate from a line of
unit depth along the z — axris. We consider the line at the origin as a mathematical
singularity in the flow field. A function ¢é or ¢ is not continuous at a singular point
and the circulation along a path crossing the origin cannot be evaluated. However. for
a path surrounding or circumventing the origin, the circulation is zero since vg =0, and
the flow is irrotational everywhere but the origin.
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6.4.4 Superposition of a uniform stream and a source; Half-body problem

Recall that both ¢ and v satisfy Laplace’s equation for flow that is both incompressible
and irrotational. Since Laplace’e equation is a linear, homogeneous partial differential
equation, solutions may be superposed (added together) to develop more complex and
interesting patterns of flow.

Consider the superposition of a source and a uniform flow as shown in the figure.

Y = tf:'uf+7:i’sw (39{]:]
m
= Ursinf + —@

7 sin +'21|T : (391)

¢ = Urm:-sﬂ-l-ﬂlnr (392)
2r

At some point on the negative x axis, say, at a distance b from the source, the velocity
due to the source will just cancel that due to the uniform flow and a stagnation point will
be created. At distance b on the negative z axis, the v, due to source is v, = E'?F =

Therefore, at the location b away,
m

m
and, b = 50 (394)

The coordinates for the stagnation point are seen to be r = b, 8 = 7. Therefore.
Ystagnation = 5 - 1 herefore, from 394, at the stagnation point,

m i
— =abl], or — = blJ. 395
2 o (398)
From 391 and 395, the equation of the streamline passing through the stagnation point
=00 ="mis,

ta | 3

=wbU = Ursin@ + ;ﬂ = Ursinf + bU8, (396)

";":’slagnar.iun =

or, the relation between r and @ for this line is,

bl = Ursin@ +bU# (397)
b(m —0)
= =t <@ <2
% sin f 0sbs2 (398
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We can plot this streamline (see, figure). Since there is no flow across a streamline, we
can regard this streamline as a solid boundary. Thus the combination of a uniform flow
and a source can be used to describe the potential flow over a streamlined body placed
in the flow. The body is open at the downstream end and thus is called a Half-body. We
can plot other streamlines in the flow field by giving different values to v and plotting
the resulting equation.
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¢ Doublet

Similar to a dipole in electro-statics, the fluid mechanical doublet is a combination of a
source and a sink of equal strength, and spaced a small distance apart. In the Figure, the
source at (—a,0) and the sink at (a,0), each of strength m, are located on the z-axis on
either side of the origin. Physically, the flow leaving the source terminates on the sink.
A point P(z,y) in the flow field has polar coordinates (r, f), and is at a distance r, from
the source and ry from the sink. Thus, the velocity potential for both at P is,

: m m m. T
=——] —Inr; = —In—= 399
& 5 nry +E?r nrs 5 In = (399)

The two dimensional doublet is defined as the limiting case as a source and sink of equal
strength approach each other, (a — 0), such that the product of the strength and the
distance between them remains a constant. So, our objective now is to evaluate ¢ as
(a — 0). Look at the figure. From geometry,

2
17 = r’+a®—2arcosf =r? [1 + ({—:) - 2% cos H] (400)

| 2
ry = r*+4a’+2arcosf=r’|1+ ;) +2;cnsﬂl (401)
. 2racosl
5 _ L+
=g Zrocosd [4']2]
i 1= ray
2ra cosf
Lﬂt-.r o = m, note, o <€ 1 {4[]3]
7 .
= = (1+a)1-a)! (404)
i
= |+ 20, neglecting higher order terms (405)
Therefore, In ? = éln{l + 20) (406)
1 &
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Since the distance between the source and the sink, a — 0, we have, 2 @ < 1, and

2 Ta 1 da® 8ol
=20 e e e
lﬂ In . 3 (..fl > + 3 (407)
- Ta
limln—= =
lim In = ! (408)
) r2  2ra cosd
e i
Therefore, the velocity. potential for both at P as a — 0, is,
m . Ta m2ra cost
— gt o T
¢ 2r 1 21 (r2+a?) (410)
But @ — 0, Therefore, can neglect a2. Thus, for a doublet,
7
S GCo8 (411)
T T
The quantity, :
K= ”—T‘i (412)

1s called the strength of the doublet. The value of K is maintained finite by increasing
m to infinite value in the limit a is reduced to zero. Next, by relating ¢ and ¥, we can
easily show that the stream function for the doublet is given by

K sinfl
T

For a doublet, the streamlines and equipotential lines are both circles.

p=— (413)

6.4.5 Bernoulli’s equation for a steady, incompressible, inviscid, irrotational
flow

Steady, Inviscid flow. The Navier- Stokes equation is, 360,

p %—T =-Vp+uV*V+pf (414)
reduces to -
{V-?)V:-fﬂ (415)

Consider writing the body force due to gravity as f = —gk = —gVz. Then, 415 may be

written as -
(V.-V)V = "Tp ~ gVz (416)

Recognize this as 416 and the Euler’s equation that we developed before using streamline
coordinates. From Vector algebra,

(V-‘U)V:%‘?(V*V}—Vx[?x’kf} (417)
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For an irrotational flow, V x (V x V) = 0. Therefore, the vector identity becomes,
1 2
(V- V)V =3V(V-V)= lv(r?) (418)
From, 416 and 418, ,
-2-".?(1?2} = —iv;u — gVz (419)

Now, during the interval, df, a fluid particle moves from the vector position r to the
position r -+ dr; the displacement dr is an arbitrary infinitesimal displacement in any
direction. Take the dot product of dr = idz + jdy + kdz, with each of the terms in 419.
Then 1 i

EV{VE] - dre = -E?p-dr-gvz-dr {425)

This gives,
dp j S
—— — gdz = =d(V*) (421)
p 2

Since dr was an arbitrary displacement, then, for a steady, incompressible, inviscid flow
that is also irrotational, 421 is valid between any two points in the flow field.

95



|

1

Figure Rankine bodies with varying
source-sink distance.

By combining a number of sources and sinks with uniform flow, we can
obtain a variety of bodies with different shapes. However, in order to obtain
a closed body, the sum of the source strengths must equal the sum of the
sink strengths. Thus far we have discussed only two-dimensional point
sources and sinks. For the purpose of generating different bodies, we could
also use sources and sinks distributed over a surface or even over a volume.
When combined with uniform flow, a further variation in the body shapes
obtainable results. Examples of different body shapes are shown in Figure

where several two-dimensional source and sink distributions have been
combined with a uniform stream.

Pointed half body oblained
from line source of lincarly
{ncreasing strength parallel
1o stream

Streamline body obtained
from point source and line
sink of lincarly decreasing
strength

]

il

Flat-nosed body obtained
from canstani line source
normal to stream and point
sink

|1l

Slender-nosed streamline

body obtaned from wedge
line source and sink of

e limecarly decreasing strength

i

Figura Examplas of bady shapes oblainable
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» Superposition of a source-sink pair and a uniform flow

From the figure and the previous development, the potential function and the stream
function for this combination are:

¢ = Urmse-%(zml-lnrg (422)
¥

Il

: m
Ursinf — E(Hl — 6s). (423)

In terms of rectangular cartesian coordinates,

B = U:t:+m[]n Vi(z+a)?+y?—In \/{:!:-u.}huyz] (424)
2ay
= * ~1
1,-5‘ = Uy m tan m (‘125}
The velocity components for the flow field are:

do T+ a T—a )

g E_Uer[(z-l a)2+y2_'(::—a]2+y?] (426)

do Yy y 1

N 5_m[{1+ﬂ)"+yz_(I-ﬂ}2+yz] i

To locate the stagnation points in the flow field, we have to look for points where u and
v vanish. We see that v = 0 at y = 0, that is along the z axis.Thus we have to next look
for u = 0 for y = 0. That is,

Ir+a rT—a y
U+m [{;-:+r1}?_{z—a}2] = 0 (428)

2ma

U = (429)

2ma
T = Hyfa?2+ —— 430
T \ [a® + U (430)

which states that the distance of the stagnation points (there are two in this flow case)
from the coordinate origin is a function of the source (sink) strength, magnitude of the
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uniform flow velocity, and the distance between the source and the sink. The value of

the stream function at the stagnation points, since y = 0, is

=] -
‘.‘]-I’stugnatiun =0—m tan =0

The equation of the body streamline shown in the figure therefore becomes

2ay

0=Uy—mtan™!

or,
Uy _ 2ay
m 2?4+ —a?

tan

(431)

(432)

(433)
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e Combined Vortex Flow: Tornado Problem

For a solid body rotation, we know that, vy = wr and this represents a foreed vortex
because external work or heat transfer or a combination is present. The vorticity is 2w.
To understand a free vortex, consider the swirling motion of water as it drains from a bath
tub. Far from the drain, the water swirls around the drain in almost circular streamlines,
with very little motion toward the drain. The swirling velocity increases as the flow
moves toward the center. The circumferential velocity is such that rv; = Constant = C.
The origin is a singular point. The streamlines are concentric circles. The vorticity of a
free vortex is

O A (i I T ) 13

G=E < r(ar) r(ae) (434)
1 (or& 1

= ;(E;rr)_;[] (*50

=0 (436)

The flow field in a stationary tornado can be represented by a solid body rotational flow,
* forced vortex”, in the core (eye), while the flowfield outside the eve is an irrotational
“free” vortex. Let R be the radius of the eye. Thus, for a tornado,

Inthecore, r < R,vpy = wr (437)
Outside the core, v3 = g (438)
r
At,r:R,un:wT:g =€ = wR (439)
2
Therefore, forr > R,uy = ? (440)

The maximum wind velocity occurs at the edge of the core, w = 5. Outside the core,
the flow is potential and we can apply Bernoulli’s equation. In the core, we have to use
Euler’s equation. Minimum pressure occurs at r = 0, the center of the tornado, and will
be negative. For a maximum wind velocity of 50m/s, (~ 112mph), the pressure at the
center will be ~ —=3.063kPa. Recall latm = 101.3kPa.
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