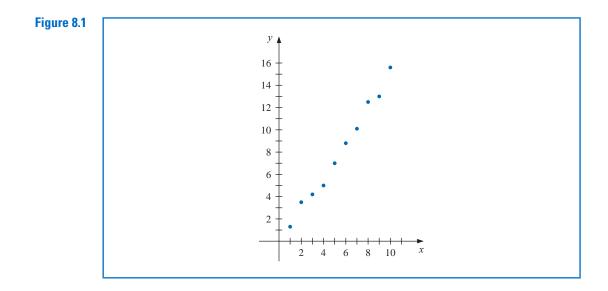
Discrete Least Squares Approximation 8.1

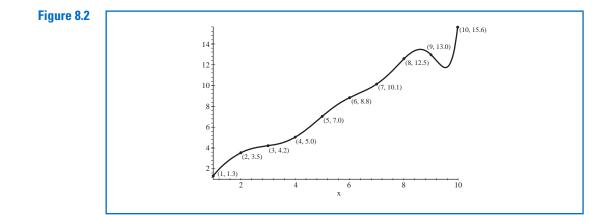
Consider the problem of estimating the values of a function at nontabulated points, given the experimental data in Table 8.1.

Figure 8.1 shows a graph of the values in Table 8.1. From this graph, it appears that the actual relationship between x and y is linear. The likely reason that no line precisely fits the data is because of errors in the data. So it is unreasonable to require that the approximating function agree exactly with the data. In fact, such a function would introduce oscillations that were not originally present. For example, the graph of the ninth-degree interpolating polynomial shown in unconstrained mode for the data in Table 8.1 is obtained in Maple using the commands

p := interp([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [1.3, 3.5, 4.2, 5.0, 7.0, 8.8, 10.1, 12.5, 13.0, 15.6], x):plot(p, x = 1..10)



The plot obtained (with the data points added) is shown in Figure 8.2.



Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it

Table 8.1 x_i *y*_i x_i 1 1.3 8.8 6 2 3.5 7 10.1 3 4.2 8 12.5

5.0

7.0

4

5

9

10

Уi

13.0

15.6

This polynomial is clearly a poor predictor of information between a number of the data points. A better approach would be to find the "best" (in some sense) approximating line, even if it does not agree precisely with the data at any point.

Let $a_1x_i + a_0$ denote the *i*th value on the approximating line and y_i be the *i*th given *y*-value. We assume throughout that the independent variables, the x_i , are exact, it is the dependent variables, the y_i , that are suspect. This is a reasonable assumption in most experimental situations.

The problem of finding the equation of the best linear approximation in the absolute sense requires that values of a_0 and a_1 be found to minimize

$$\Xi_{\infty}(a_0, a_1) = \max_{1 \le i \le 10} \{ |y_i - (a_1 x_i + a_0)| \}.$$

This is commonly called a **minimax** problem and cannot be handled by elementary techniques.

Another approach to determining the best linear approximation involves finding values of a_0 and a_1 to minimize

$$E_1(a_0, a_1) = \sum_{i=1}^{10} |y_i - (a_1 x_i + a_0)|.$$

This quantity is called the **absolute deviation**. To minimize a function of two variables, we need to set its partial derivatives to zero and simultaneously solve the resulting equations. In the case of the absolute deviation, we need to find a_0 and a_1 with

$$0 = \frac{\partial}{\partial a_0} \sum_{i=1}^{10} |y_i - (a_1 x_i + a_0)| \text{ and } 0 = \frac{\partial}{\partial a_1} \sum_{i=1}^{10} |y_i - (a_1 x_i + a_0)|.$$

The problem is that the absolute-value function is not differentiable at zero, and we might not be able to find solutions to this pair of equations.

Linear Least Squares

The **least squares** approach to this problem involves determining the best approximating line when the error involved is the sum of the squares of the differences between the *y*-values on the approximating line and the given *y*-values. Hence, constants a_0 and a_1 must be found that minimize the least squares error:

$$E_2(a_0, a_1) = \sum_{i=1}^{10} \left[y_i - (a_1 x_i + a_0) \right]^2.$$

The least squares method is the most convenient procedure for determining best linear approximations, but there are also important theoretical considerations that favor it. The minimax approach generally assigns too much weight to a bit of data that is badly in error, whereas the absolute deviation method does not give sufficient weight to a point that is considerably out of line with the approximation. The least squares approach puts substantially more weight on a point that is out of line with the rest of the data, but will not permit that point to completely dominate the approximation. An additional reason for considering the least squares approach involves the study of the statistical distribution of error. (See [Lar], pp. 463–481.)

The general problem of fitting the best least squares line to a collection of data $\{(x_i, y_i)\}_{i=1}^m$ involves minimizing the total error,

$$E \equiv E_2(a_0, a_1) = \sum_{i=1}^m \left[y_i - (a_1 x_i + a_0) \right]^2,$$

with respect to the parameters a_0 and a_1 . For a minimum to occur, we need both

$$\frac{\partial E}{\partial a_0} = 0$$
 and $\frac{\partial E}{\partial a_1} = 0$,

that is,

$$0 = \frac{\partial}{\partial a_0} \sum_{i=1}^{m} \left[(y_i - (a_1 x_i - a_0)) \right]^2 = 2 \sum_{i=1}^{m} (y_i - a_1 x_i - a_0)(-1)$$

and

$$0 = \frac{\partial}{\partial a_1} \sum_{i=1}^{m} \left[y_i - (a_1 x_i + a_0) \right]^2 = 2 \sum_{i=1}^{m} (y_i - a_1 x_i - a_0) (-x_i).$$

These equations simplify to the normal equations:

$$a_0 \cdot m + a_1 \sum_{i=1}^m x_i = \sum_{i=1}^m y_i$$
 and $a_0 \sum_{i=1}^m x_i + a_1 \sum_{i=1}^m x_i^2 = \sum_{i=1}^m x_i y_i$

The solution to this system of equations is

$$a_{0} = \frac{\sum_{i=1}^{m} x_{i}^{2} \sum_{i=1}^{m} y_{i} - \sum_{i=1}^{m} x_{i} y_{i} \sum_{i=1}^{m} x_{i}}{m\left(\sum_{i=1}^{m} x_{i}^{2}\right) - \left(\sum_{i=1}^{m} x_{i}\right)^{2}}$$
(8.1)

and

$$a_{1} = \frac{m \sum_{i=1}^{m} x_{i} y_{i} - \sum_{i=1}^{m} x_{i} \sum_{i=1}^{m} y_{i}}{m \left(\sum_{i=1}^{m} x_{i}^{2}\right) - \left(\sum_{i=1}^{m} x_{i}\right)^{2}}.$$
(8.2)

Example 1 Find the least squares line approximating the data in Table 8.1.

Solution We first extend the table to include x_i^2 and x_iy_i and sum the columns. This is shown in Table 8.2.

Table 8.2			-		
	x_i	y_i	x_i^2	$x_i y_i$	$P(x_i) = 1.538x_i - 0.360$
	1	1.3	1	1.3	1.18
	2	3.5	4	7.0	2.72
	3	4.2	9	12.6	4.25
	4	5.0	16	20.0	5.79
	5	7.0	25	35.0	7.33
	6	8.8	36	52.8	8.87
	7	10.1	49	70.7	10.41
	8	12.5	64	100.0	11.94
	9	13.0	81	117.0	13.48
	10	15.6	100	156.0	15.02
	55	81.0	385	572.4	$E = \sum_{i=1}^{10} (y_i - P(x_i))^2 \approx 2.34$

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it

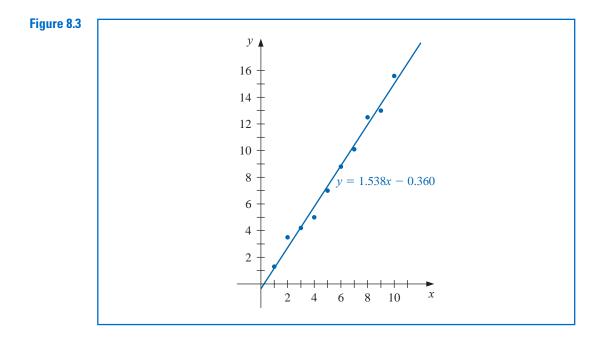
The word normal as used here implies perpendicular. The normal equations are obtained by finding perpendicular directions to a multidimensional surface. The normal equations (8.1) and (8.2) imply that

$$a_0 = \frac{385(81) - 55(572.4)}{10(385) - (55)^2} = -0.360$$

and

$$a_1 = \frac{10(572.4) - 55(81)}{10(385) - (55)^2} = 1.538$$

so P(x) = 1.538x - 0.360. The graph of this line and the data points are shown in Figure 8.3. The approximate values given by the least squares technique at the data points are in Table 8.2.



Polynomial Least Squares

The general problem of approximating a set of data, $\{(x_i, y_i) \mid i = 1, 2, ..., m\}$, with an algebraic polynomial

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

of degree n < m - 1, using the least squares procedure is handled similarly. We choose the constants a_0, a_1, \ldots, a_n to minimize the least squares error $E = E_2(a_0, a_1, \ldots, a_n)$, where

$$E = \sum_{i=1}^{m} (y_i - P_n(x_i))^2$$

= $\sum_{i=1}^{m} y_i^2 - 2 \sum_{i=1}^{m} P_n(x_i) y_i + \sum_{i=1}^{m} (P_n(x_i))^2$

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

$$= \sum_{i=1}^{m} y_i^2 - 2 \sum_{i=1}^{m} \left(\sum_{j=0}^{n} a_j x_i^j \right) y_i + \sum_{i=1}^{m} \left(\sum_{j=0}^{n} a_j x_i^j \right)^2$$
$$= \sum_{i=1}^{m} y_i^2 - 2 \sum_{j=0}^{n} a_j \left(\sum_{i=1}^{m} y_i x_i^j \right) + \sum_{j=0}^{n} \sum_{k=0}^{n} a_j a_k \left(\sum_{i=1}^{m} x_i^{j+k} \right).$$

As in the linear case, for *E* to be minimized it is necessary that $\partial E/\partial a_j = 0$, for each j = 0, 1, ..., n. Thus, for each *j*, we must have

$$0 = \frac{\partial E}{\partial a_j} = -2\sum_{i=1}^m y_i x_i^j + 2\sum_{k=0}^n a_k \sum_{i=1}^m x_i^{j+k}.$$

This gives n + 1 normal equations in the n + 1 unknowns a_i . These are

$$\sum_{k=0}^{n} a_k \sum_{i=1}^{m} x_i^{j+k} = \sum_{i=1}^{m} y_i x_i^j, \quad \text{for each } j = 0, 1, \dots, n.$$
(8.3)

It is helpful to write the equations as follows:

$$a_{0}\sum_{i=1}^{m}x_{i}^{0} + a_{1}\sum_{i=1}^{m}x_{i}^{1} + a_{2}\sum_{i=1}^{m}x_{i}^{2} + \dots + a_{n}\sum_{i=1}^{m}x_{i}^{n} = \sum_{i=1}^{m}y_{i}x_{i}^{0},$$

$$a_{0}\sum_{i=1}^{m}x_{i}^{1} + a_{1}\sum_{i=1}^{m}x_{i}^{2} + a_{2}\sum_{i=1}^{m}x_{i}^{3} + \dots + a_{n}\sum_{i=1}^{m}x_{i}^{n+1} = \sum_{i=1}^{m}y_{i}x_{i}^{1},$$

$$\vdots$$

$$a_{0}\sum_{i=1}^{m}x_{i}^{n} + a_{1}\sum_{i=1}^{m}x_{i}^{n+1} + a_{2}\sum_{i=1}^{m}x_{i}^{n+2} + \dots + a_{n}\sum_{i=1}^{m}x_{i}^{2n} = \sum_{i=1}^{m}y_{i}x_{i}^{n}.$$

These *normal equations* have a unique solution provided that the x_i are distinct (see Exercise 14).

Example 2 Fit the data in Table 8.3 with the discrete least squares polynomial of degree at most 2.

Solution For this problem, n = 2, m = 5, and the three normal equations are

Та	ble 8.3		$5a_0 + 2.5a_1 + 1.875a_2 = 8.7680,$
i	x _i	<i>y_i</i>	$2.5a_0 + 1.875a_1 + 1.5625a_2 = 5.4514,$
1	0	1.0000	$1.875a_0 + 1.5625a_1 + 1.3828a_2 = 4.4015.$
2	0.25	1.2840	

To solve this system using Maple, we first define the equations

$$eq1 := 5a0 + 2.5a1 + 1.875a2 = 8.7680$$
:
 $eq2 := 2.5a0 + 1.875a1 + 1.5625a2 = 5.4514$:
 $eq3 := 1.875a0 + 1.5625a1 + 1.3828a2 = 4.4015$

and then solve the system with

solve({*eq*1, *eq*2, *eq*3}, {*a*0, *a*1, *a*2})

This gives

3

4

5

0.50

0.75

1.00

1.6487

2.1170

2.7183

 $\{a_0 = 1.005075519, a_1 = 0.8646758482, a_2 = .8431641518\}$

Thus the least squares polynomial of degree 2 fitting the data in Table 8.3 is

$$P_2(x) = 1.0051 + 0.86468x + 0.84316x^2,$$

whose graph is shown in Figure 8.4. At the given values of x_i we have the approximations shown in Table 8.4.

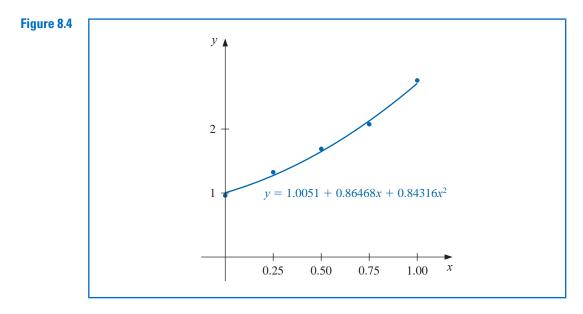


Table 8.4	i	1	2	3	4	5
	x_i	0	0.25	0.50	0.75	1.00
	y_i	1.0000	1.2840	1.6487	2.1170	2.7183
	$P(x_i)$	1.0051	1.2740	1.6482	2.1279	2.7129
	$y_i - P(x_i)$	-0.0051	0.0100	0.0004	-0.0109	0.0054

The total error,

$$E = \sum_{i=1}^{5} (y_i - P(x_i))^2 = 2.74 \times 10^{-4},$$

is the least that can be obtained by using a polynomial of degree at most 2.

Maple has a function called *LinearFit* within the *Statistics* package which can be used to compute the discrete least squares approximations. To compute the approximation in Example 2 we first load the package and define the data

with(*Statistics*): *xvals* := *Vector*([0, 0.25, 0.5, 0.75, 1]): *yvals* := *Vector*([1, 1.284, 1.6487, 2.117, 2.7183]):

To define the least squares polynomial for this data we enter the command

$$P := x \rightarrow LinearFit([1, x, x^2], xvals, yvals, x): P(x)$$

Maple returns a result which rounded to 5 decimal places is

$$1.00514 + 0.86418x + 0.84366x^2$$

The approximation at a specific value, for example at x = 1.7, is found with P(1.7)

y

4.91242

At times it is appropriate to assume that the data are exponentially related. This requires the approximating function to be of the form

$$= be^{ax}$$
 (8.4)

or

$$y = bx^a, \tag{8.5}$$

for some constants *a* and *b*. The difficulty with applying the least squares procedure in a situation of this type comes from attempting to minimize

$$E = \sum_{i=1}^{m} (y_i - be^{ax_i})^2$$
, in the case of Eq. (8.4),

or

$$E = \sum_{i=1}^{m} (y_i - bx_i^a)^2$$
, in the case of Eq. (8.5)

The normal equations associated with these procedures are obtained from either

$$0 = \frac{\partial E}{\partial b} = 2 \sum_{i=1}^{m} (y_i - be^{ax_i})(-e^{ax_i})$$

and

$$0 = \frac{\partial E}{\partial a} = 2 \sum_{i=1}^{m} (y_i - be^{ax_i})(-bx_i e^{ax_i}), \text{ in the case of Eq. (8.4)}$$

or

$$0 = \frac{\partial E}{\partial b} = 2 \sum_{i=1}^{m} (y_i - bx_i^a)(-x_i^a)$$

and

$$0 = \frac{\partial E}{\partial a} = 2 \sum_{i=1}^{m} (y_i - bx_i^a) (-b(\ln x_i)x_i^a), \text{ in the case of Eq. (8.5)}$$

No exact solution to either of these systems in *a* and *b* can generally be found.

The method that is commonly used when the data are suspected to be exponentially related is to consider the logarithm of the approximating equation:

$$\ln y = \ln b + ax$$
, in the case of Eq. (8.4),

and

$$\ln y = \ln b + a \ln x$$
, in the case of Eq. (8.5).

In either case, a linear problem now appears, and solutions for $\ln b$ and a can be obtained by appropriately modifying the normal equations (8.1) and (8.2).

However, the approximation obtained in this manner is *not* the least squares approximation for the original problem, and this approximation can in some cases differ significantly from the least squares approximation to the original problem. The application in Exercise 13 describes such a problem. This application will be reconsidered as Exercise 11 in Section 10.3, where the exact solution to the exponential least squares problem is approximated by using methods suitable for solving nonlinear systems of equations.

Illustration Consider the collection of data in the first three columns of Table 8.5.

Te		_	0	. .
та	nı	ρ	x	h

i	x_i	y_i	ln y _i	x_i^2	$x_i \ln y_i$
1	1.00	5.10	1.629	1.0000	1.629
2	1.25	5.79	1.756	1.5625	2.195
3	1.50	6.53	1.876	2.2500	2.814
4	1.75	7.45	2.008	3.0625	3.514
5	2.00	8.46	2.135	4.0000	4.270
	7.50		9.404	11.875	14.422

If x_i is graphed with $\ln y_i$, the data appear to have a linear relation, so it is reasonable to assume an approximation of the form

$$y = be^{ax}$$
, which implies that $\ln y = \ln b + ax$.

Extending the table and summing the appropriate columns gives the remaining data in Table 8.5.

Using the normal equations (8.1) and (8.2),

$$a = \frac{(5)(14.422) - (7.5)(9.404)}{(5)(11.875) - (7.5)^2} = 0.5056$$

and

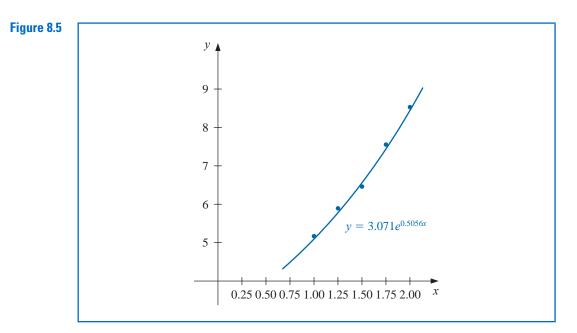
$$\ln b = \frac{(11.875)(9.404) - (14.422)(7.5)}{(5)(11.875) - (7.5)^2} = 1.122$$

With $\ln b = 1.122$ we have $b = e^{1.122} = 3.071$, and the approximation assumes the form $y = 3.071e^{0.5056x}$.

At the data points this gives the values in Table 8.6. (See Figure 8.5.)

Table 8.6	i	x_i	<i>y</i> _i	$3.071e^{0.5056x_i}$	$ y_i - 3.071e^{0.5056x_i} $
	1	1.00	5.10	5.09	0.01
	2	1.25	5.79	5.78	0.01
	3	1.50	6.53	6.56	0.03
	4	1.75	7.45	7.44	0.01
	5	2.00	8.46	8.44	0.02

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it



Exponential and other nonlinear discrete least squares approximations can be obtain in the *Statistics* package by using the commands *ExponentialFit* and *NonlinearFit*.

For example, the approximation in the Illustration can be obtained by first defining the data with

X := Vector([1, 1.25, 1.5, 1.75, 2]): Y := Vector([5.1, 5.79, 6.53, 7.45, 8.46]):

and then issuing the command

ExponentialFit(X, Y, x)

gives the result, rounded to 5 decimal places,

 $3.07249e^{0.50572x}$

If instead the *NonlinearFit* command is issued, the approximation produced uses methods of Chapter 10 for solving a system of nonlinear equations. The approximation that Maple gives in this case is

 $3.06658(1.66023)^x \approx 3.06658e^{0.50695}$.

EXERCISE SET 8.1

- 1. Compute the linear least squares polynomial for the data of Example 2.
- 2. Compute the least squares polynomial of degree 2 for the data of Example 1, and compare the total error E for the two polynomials.
- **3.** Find the least squares polynomials of degrees 1, 2, and 3 for the data in the following table. Compute the error *E* in each case. Graph the data and the polynomials.

x_i	1.0	1.1	1.3	1.5	1.9	2.1
y_i	1.84	1.96	2.21	2.45	2.94	3.18

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it

4. Find the least squares polynomials of degrees 1, 2, and 3 for the data in the following table. Compute the error *E* in each case. Graph the data and the polynomials.

x_i	0	0.15	0.31	0.5	0.6	0.75
y_i	1.0	1.004	1.031	1.117	1.223	1.422

5. Given the data:

x_i	4.0	4.2	4.5	4.7	5.1	5.5	5.9	6.3	6.8	7.1
y_i	102.56	113.18	130.11	142.05	167.53	195.14	224.87	256.73	299.50	326.72

- **a.** Construct the least squares polynomial of degree 1, and compute the error.
- b. Construct the least squares polynomial of degree 2, and compute the error.
- c. Construct the least squares polynomial of degree 3, and compute the error.
- **d.** Construct the least squares approximation of the form be^{ax} , and compute the error.
- e. Construct the least squares approximation of the form bx^a , and compute the error.
- **6.** Repeat Exercise 5 for the following data.

x_i	0.2	0.3	0.6	0.9	1.1	1.3	1.4	1.6
y_i	0.050446	0.098426	0.33277	0.72660	1.0972	1.5697	1.8487	2.5015

7. In the lead example of this chapter, an experiment was described to determine the spring constant *k* in Hooke's law:

$$F(l) = k(l - E).$$

The function F is the force required to stretch the spring l units, where the constant E = 5.3 in. is the length of the unstretched spring.

a. Suppose measurements are made of the length l, in inches, for applied weights F(l), in pounds, as given in the following table.

F(l)	l
2	7.0
4	9.4
6	12.3

Find the least squares approximation for *k*.

b. Additional measurements are made, giving more data:

F(l)	l
3	8.3
5	11.3
8	14.4
10	15.9

Compute the new least squares approximation for k. Which of (a) or (b) best fits the total experimental data?

8. The following list contains homework grades and the final-examination grades for 30 numerical analysis students. Find the equation of the least squares line for this data, and use this line to determine the homework grade required to predict minimal A (90%) and D (60%) grades on the final.

Homework	Final	Homework	Final
302	45	323	83
325	72	337	99
285	54	337	70
339	54	304	62
334	79	319	66
322	65	234	51
331	99	337	53
279	63	351	100
316	65	339	67
347	99	343	83
343	83	314	42
290	74	344	79
326	76	185	59
233	57	340	75
254	45	316	45

9. The following table lists the college grade-point averages of 20 mathematics and computer science majors, together with the scores that these students received on the mathematics portion of the ACT (American College Testing Program) test while in high school. Plot these data, and find the equation of the least squares line for this data.

ACT score	Grade-point average	ACT score	Grade-point average
28	3.84	29	3.75
25	3.21	28	3.65
28	3.23	27	3.87
27	3.63	29	3.75
28	3.75	21	1.66
33	3.20	28	3.12
28	3.41	28	2.96
29	3.38	26	2.92
23	3.53	30	3.10
27	2.03	24	2.81

10. The following set of data, presented to the Senate Antitrust Subcommittee, shows the comparative crash-survivability characteristics of cars in various classes. Find the least squares line that approximates these data. (The table shows the percent of accident-involved vehicles in which the most severe injury was fatal or serious.)

Туре	Average Weight	Percent Occurrence
1. Domestic luxury regular	4800 lb	3.1
2. Domestic intermediate regular	3700 lb	4.0
3. Domestic economy regular	3400 lb	5.2
4. Domestic compact	2800 lb	6.4
5. Foreign compact	1900 lb	9.6

11. To determine a relationship between the number of fish and the number of species of fish in samples taken for a portion of the Great Barrier Reef, P. Sale and R. Dybdahl [SD] fit a linear least squares polynomial to the following collection of data, which were collected in samples over a 2-year period. Let *x* be the number of fish in the sample and *y* be the number of species in the sample.

x	у	x	у	x	у
13	11	29	12	60	14
15	10	30	14	62	21
16	11	31	16	64	21
21	12	36	17	70	24
22	12	40	13	72	17
23	13	42	14	100	23
25	13	55	22	130	34

Determine the linear least squares polynomial for these data.

12. To determine a functional relationship between the attenuation coefficient and the thickness of a sample of taconite, V. P. Singh [Si] fits a collection of data by using a linear least squares polynomial. The following collection of data is taken from a graph in that paper. Find the linear least squares polynomial fitting these data.

Thickness (cm)	Attenuation coefficient (dB/cm)
0.040	26.5
0.041	28.1
0.055	25.2
0.056	26.0
0.062	24.0
0.071	25.0
0.071	26.4
0.078	27.2
0.082	25.6
0.090	25.0
0.092	26.8
0.100	24.8
0.105	27.0
0.120	25.0
0.123	27.3
0.130	26.9
0.140	26.2

- 13. In a paper dealing with the efficiency of energy utilization of the larvae of the modest sphinx moth (*Pachysphinx modesta*), L. Schroeder [Schr1] used the following data to determine a relation between W, the live weight of the larvae in grams, and R, the oxygen consumption of the larvae in milliliters/hour. For biological reasons, it is assumed that a relationship in the form of $R = bW^a$ exists between W and R.
 - a. Find the logarithmic linear least squares polynomial by using

$$\ln R = \ln b + a \ln W$$

b. Compute the error associated with the approximation in part (a):

$$E = \sum_{i=1}^{37} (R_i - bW_i^a)^2.$$

- c. Modify the logarithmic least squares equation in part (a) by adding the quadratic term $c(\ln W_i)^2$, and determine the logarithmic quadratic least squares polynomial.
- d. Determine the formula for and compute the error associated with the approximation in part (c).