

Ceramics are inorganic compounds in which atoms are bonded with either ionic or covalent bonds or mixed bond.

- Usually metallic + non-metallic elements
- Always composed of more than one element (e.g., Al₂O₃, NaCl, SiC, SiO₂)
- Bonds are partially or totally ionic
- Hard and brittle
- Electrical and thermal insulators
- All ceramic compounds are composed of anions and cations.
- Cations lose their valence electrons to anions.
- Cations are smaller in size than anions.
- Ceramic crystals are built of framework of anions in which cations fit in the voids or holes in between.

Factors that Determine Crystal Structure

1. Relative sizes of ions – Formation of stable structures:

--maximize the # of oppositely charged ion neighbors.

unstable

stable

2. Maintenance of

Charge Neutrality :

- --Net charge in ceramic should be zero.
- --Reflected in chemical formula:

★______
m, p values to achieve charge neutrality

Atomic Bonding in Ceramics

- Bonding:
 - -- Can be ionic and/or covalent in character.
 - -- % ionic character increases with difference in electronegativity of atoms.

• Degree of ionic character may be large or small:

3-Coordination # and Ionic Radii

r

anion

• Coordination number increases with

To form a stable structure, how many anions can surround a cation?

Coordination Number	Cation–Anion Radius Ratio	Coordination Geometry
2	<0.155	
3	0.155-0.225	
4	0.225-0.414	3
6	0.414-0.732	
8	0.732–1.0	83

Table 3.3Coordination Numbers and Geometries for Various Cation–Anion
Radius Ratios (r_c/r_A)

Computation of Minimum Cation-Anion Radius Ratio

Determine minimum r_{cation}/r_{anion} for an octahedral site • (C.N. = 6)

Example Problem: Predicting the Crystal Structure of FeO

• On the basis of ionic radii, what crystal structure would you predict for FeO?

Cation	<u>lonic radius (</u> nm)	• Answer:
Al ³⁺	0.053	$r_{\rm oution} = 0.077$
Fe ²⁺	0.077	$\frac{r_{\text{cation}}}{r_{\text{anion}}} = \frac{0.0140}{0.140}$ $= 0.550$
Fe ³⁺	0.069	
Ca ²⁺	0.100	- 0,000
		based on this ratio, coord # = 6 because
<u>Anion</u>		
0 ²⁻	0.140	0.414 < 0.550 < 0.732
CI ⁻	0.181	 crystal structure is similar to NaC
F ⁻	0.133	

Rock Salt Structure

Same concepts can be applied to ionic solids in general. Example: NaCl (rock salt) structure

• Na⁺ $r_{Na} = 0.102 \text{ nm}$ • Cl⁻ $r_{Cl} = 0.181 \text{ nm}$

$$r_{\rm Na} / r_{\rm Cl} = 0.564$$

∴ cations (Na⁺) prefer octahedral sites

MgO and FeO

MgO and FeO also have the NaCl structure

•
$$O^{2-}$$
 $r_0 = 0.140 \text{ nm}$
• Mg^{2+} $r_{Mg} = 0.072 \text{ nm}$

$$r_{\rm Mg}/r_{\rm O} = 0.514$$

: cations prefer octahedral sites

So each Mg²⁺ (or Fe²⁺) has 6 neighbor oxygen atoms

AX Crystal Structures

AX–Type Crystal Structures include NaCl, CsCl, and zinc blende

Cesium Chloride structure:

AX₂ Crystal Structures

Fluorite structure

Calcium Fluorite (CaF₂)• Cations in cubic sites•

 UO_{2} , Th O_2 , Zr O_2 , Ce O_2 •

Antifluorite structure – • positions of cations and anions reversed

ABX₃ Crystal Structures

Ex: complex oxide BaTiO₃

• Ti⁴⁺ 🔘 Ba²⁺ 🔘 O^{2–}

SUMMARY

- Atoms may assemble into crystalline or amorphous structures.
- Common metallic crystal structures are FCC, BCC and HCP. Coordination number and atomic packing factor are the same for both FCC and HCP crystal structures.
- We can predict the density of a material, provided we know the atomic weight, atomic radius, and crystal geometry (e.g., FCC, BCC, HCP).
- Interatomic bonding in ceramics is ionic and/or covalent.
- Ceramic crystal structures are based on:
 - -- maintaining charge neutrality
 - -- cation-anion radii ratios.