

نموذج امتحان نهائي الفصل الدراسي الثانى لعام ٢٠٢٤ ٢٠٢٣

Answer the following questions:

<u>Q1:</u> (18 Marks)

a- Let $I = \{[a, b) : a, b \in \mathbb{R}, a \leq b\}$, $\sigma(I)$ be the smallest σ - algebra containing I and $\beta(\mathbb{R})$ be Borel σ -algebra of \mathbb{R} . Show that $\sigma(I) = \beta(\mathbb{R})$. (5 Marks)

b- Give the meaning of following: σ -algebra, an outer measure on X, Lebesgue measurable. (4 Marks)

c- Let X be a nonempty set and $\Sigma = P(X)$. Define $\mu: \Sigma \to [0, \infty)$ by

 $\mu(A) = \begin{cases} n & \text{if } A \text{ has n element} \\ \infty & \text{otherwise.} \end{cases}$

Is μ a measure space on P(X)?

(5 Marks)

d- Let (X, Σ, μ) be a measure space, $A, B \in \Sigma$ and $A \subseteq B$. Prove that $\mu(A) \le \mu(B)$. (4 Marks)

Q2: (17 Marks)

a- Let (X, Σ, μ) be a measure space, and (A_n) is a sequence in Σ . Prove that

(7 Marks)

 $\mu\left(\bigcup_{n=1}^{\infty}A_{n}\right)\leq\sum_{n=1}^{\infty}\mu(A_{n}).$ b- Let X be a set, μ^{*} an outer measure on X, $\mu^{*}(E)=0$ and $E\subset X$. Prove that E is μ^{*} measurable. (4 Marks)

c- Let X be a set, μ^* an outer measure on X and $E_1, E_2 \in M$, $E_1 \cap E_2 = \emptyset$ where M is the collection of all μ^* -measurable subsets of X. Show that

 $\mu^*(A \cap (E_1 \cup E_2)) = \mu^*(A \cap E_1) + \mu^*(A \cap E_2)$

(6 Marks)

<u>Q3:</u>

a- Define and prove the Lebesgue outer measure on \mathbb{R} . (5 Marks)

b- Let μ^* an outer measure on R, $A \subset R$. Prove that there exist an open set V such that $A \subset V$ and $\mu^*(V) < \mu^*(A) + \epsilon$. (4 Marks)

c- Show that the interval (a, ∞) , $a \in \mathbb{R}$ is measurable. (5 Marks)

d- Let (X, Σ) be a measurable space and $E \in \Sigma$, $f: E \to \mathbb{R}$ and f is measurable. Show that the set $\{x \in E: f(x) < \alpha, \alpha \in \mathbb{R}\}$ is measurable. (4 Marks)

<u>Q4:</u> (17 Marks)

a- Give an example for a real-valued function is a measurable. (4 Marks)

b- Assume that f and g are measurable real-valued function defined on a domain $E \in \Sigma$. Show that cf, $f \land g$ and |f| are measurable functions. (5 Marks)

c- Let (X, Σ, μ) be a measure space, φ non-negative simple functions. Show for any $A, B \subseteq X$, that $\int_{A \cup B} \varphi d\mu = \int_A \varphi d\mu + \int_B \varphi d\mu. \tag{3 Marks}$

d- Let (X, Σ, μ) be a measure space. For any $A \in \Sigma$ and the function $\nu: \Sigma \to [0, \infty]$ defined by

 $\nu(A) = \int_A \varphi d\mu$, Show that the function $\nu(A)$ is a measure on X. (5 Marks)

مع أطيب التمنيات بالتوفيق

رئيس قسم الرياضيات: أ.د/حسن المرشدي

أستاذ المقرر: د/وفاء قوطه