		Family Family	Ceiroanuni	Dat
nt of light emit	ted by a sampl	e as a function of	wavelength	
sion spectra	(c) Electromag	netic spectrum	(d) Electromagnetic ra	adiation
without extensi	ive mixing of so	olution in electroc	hemical cell is	
ridge	(c) inso	oluble-salt electrod	les (d) ammeter	
ained in 58.5 g	m NaCl equal.	• • • • • • • • • • • • • • • • • • • •	(Na=23, Cl=35.5)	
0	(c) 10		(d) 1	
tion of the sum	of all organica	lly bound carbons	S	
)	(c) TO	C	(d) DOC	-
	os in finding th	e spatial arranger	ment of atoms in a m	olecule.
vimetric	(c) In	strumental	(d) Structural	
tion: $Cu(s) +$	$2Ag^{+}(aq) \rightarrow$	$Cu^{2+}(aq) + 2Ag(s)$	s) is	

Damietta University

-		15 and 10 10 10 10 10 10 10 10 10 10 10 10 10	
	3	is a plot of	the amou
	(a)	Emission	(b) Emis
	4	Device that allows ion	s to flow
	(a)	conductivity bridge	(b) salt l
	5	The number of millim	oles con
	(a)	1000	(b) 10
	6	enables the d	etermina
	(a)	COD	(b) BO
	7	analysis is the cher	nical ana
	(a)	Surface	(b) Gra
	8	The reducing agent in	the reac
	(2)	$\Lambda \alpha(c)$	(h) Cui

Jan. 2024/2025

14 In electrolytic cell, the reaction is	reaction isandcurrent		
(a) spontaneous-required	(b) nonspontaneous-required (c	(c) spontaneous-produce (d)	(d) nonspontaneous-produce
15 0.8 moles in 25ml equal	mole/L		
(a) 32	(b) 3.2	(c) 0.32	(d) 0.032
16 Electrochemistry deal	Electrochemistry deals with the interconversion between	ween	
(a) electrical and	(b) kinetic and	(c) thermal and	(d) kinetic and
chemical energy	chemical energy	chemical energy	electrical energy
17is used during	used during the titration between strong acid & weak base	cid & weak base	
(a) Any indicator	(b) Methyl orange	(c) Phenolphthalein	(d) Mixed indicator
18 Re-dissolution of coa	Re-dissolution of coagulated colloids by washing and removing inert electrolyte is	nd removing inert electrolyte	is
(a) peptization	(b) coagulation	(c) agglomeration	(d) nucleation
19 Metal electrode is con	Metal electrode is consideredelectrode		
(a) first kind	(b) second kind	(c) third kind	(d) fourth kind
20 Determination of COI	Determination of COD in wastewater samples is an example for	•	titration
(a) neutralization	(b) precipitation	(c) complexometric	(d) (redox)
21 Determination of dissolved oxygen is	olved oxygen is an application of	n of	
(a) potentiometry	(b) conductometry	(c) voltammetry	(d) polarography
22 caused	caused by unknown and unpredictable changes in the experiment	le changes in the experiment	
(a) Random Errors	(b) Systematic Errors	(c) Gross errors	(d) determinate errors
23the point at	the point at which the reaction is just complete	plete.	
(a) Start point	(b) End point	(c) Equivalent point	(d) Intermediate point
24 Precipitate heated for	heated for hour(s) in contact with solut	solution from which it was formed is	is called
(a) digestion	(b) co-precipitation	(c) coagulation	(d) agglomeration
25 Suspended colloidal	Suspended colloidal particles coalesce to form larger filterable particles	er filterable particles is called	
(a) co-precipitation	(b) post-precipitation	(c) agglomeration	(d) Nucleation
Question 2 [22.5 marks]			
(a) Give one different	(a) Give one difference between each two pair of the following:	of the following:	[6 marks]

- (a) Give one difference between each two pair of the following:
- i. Flame emission and atomic absorption spectrophotometer.
- Atomic and molecular spectra
- iii. Nephlometer and turbidimeter
- (b) Mention with drawing the key parts of a pH meter
- (c) **Deduce** the equation: A= ECL
- (d) Illustrate the main component of TOC Analyzer and how can you determine the TOC in water sample?

[6½ marks]

[5 marks] [5 marks]

Best wishes

Prof. Dr / Morvat A. F. Sonbati

Faculty of Science Environmental Sciences Department

Semester: Jan. 2025 Date: Monday 13/1/2025

Final Exam in "Environmental Chemistry 308 ENV" (Part II)

for 3rd. year Environmental Sciences Students

Allowed Time 1½ hours

Answer All the Following Questions:

Total Mark: 52.5 Marks

Question [1]: (19 Marks)

a) Compare between the FID and the Ultra-violet detectors in chromatographic techniques.

[5 Marks]

b) Draw a detailed schematic diagram of a Gas Chromatograph.

[3 Marks]

c) Choose the correct answer for each of the following: -

[4 Marks]

- i) What makes the liquid pass through the column in HPLC?
 - 1-Electricity.
 - 2- Gravity.
 - 3- A pump.
 - 4- The capillary forces.
- ii) What are the solid particles used in chromatography called?
 - 1- The solid phase.
 - 2- The particular phase.
 - 3- The column phase.
 - 4- The stationary phase.
- iii) What is the liquid used in chromatography called?
 - 1- The pumped phase.
 - 2- The transparent phase.
 - 3- The mobile phase.
 - 4- The solution phase.
- iv) Chromatographic retention is due to:
 - 1- Adsorption of the analyte to the stationary phase.
 - 2- Different injection times by the auto-sampler.
 - 3- Differences in absorbance in the UV detector.
 - 4- Deviations in the flow from the pump.

- d) Discuss the injections techniques commonly used in capillary GC, and use drawing when applicable, then address the advantages and drawbacks for each technique. [5 Marks]
- e) Comment on the properties of the eluent in column chromatographic separation techniques. [2 Marks]

Question [2]: (19 Marks)

a) Conditioning of the column in the gas chromatographic separation is a very important process: -

i. Why is this process needed?

[1 Mark]

ii. How it is carried out?

[3 Marks]

- b) **Deduce** the order of separation of the organic compounds in the following samples by applying of HPLC technique, and using of silica gel as a stationary phase.
 - * Suggest a suitable eluent or mixture of eluents for the separation of these compounds and give reasons for your deduction, then draw a simple chromatogram for the separated compounds: -
 - Sample (I):

[7.5 Marks]

- Sample (II):

[7.5 Marks]

(i)

(ii)

(iii)

Question [3]: (14.5 Marks)

a) Write a short informative note on the capillary column in Gas Chromatograph. [3 Marks]

- b) **Deduce** the order of separation of the organic compounds in the following mixture by applying of HPLC technique, and using of a polar stationary phase.
 - * Suggest a suitable eluent or mixture of eluents for the separation of these compounds and give reasons for your deduction: [11.5 Marks]

Assoc. Prof. Dr. Khaled H. El-Ezaby