## Chapter 1

## Introduction:

Compounds isolated from natural sources or present in it e.g.plant, animal and human bodies and are classified into three types according to their structures and their sources into :

1-Terpenes

## 2-Steroids

3-

Alkaloids

The work in this field classified into :

a-*Extraction and Isolation* of these compounds from their natural sources, followed by structure elucidation (establishment) of the newly isolated compounds by:

I)Elemental analysis ;II)Spectroscopic methods ;III)e.g.I.R.,<sup>1</sup>-

HNMR,<sup>13</sup>C-NMR,and Mass spectra.

III)*Structural elucidation* by chemical reactions based on their function groups (it is the reactive part of the molecules), for example,

a-Oxo compounds e.g.RCOOH by esterification and acidity

,RCHO and RCOR by condensation with NH<sub>2</sub>NH<sub>2</sub> or NH<sub>2</sub>OH

ROH by esterification or oxidation

ArOH by FeCl<sub>3</sub> or diazotization and oxidation, at which there are a

differences between aliphatic and aromatic (phenolic )hydroxyl groups.

There are saturated compounds as alkanes which reacting by substitutions ,no addition takes

place; while , unsaturated compounds e, g. alkenes reacting by additions.

c-Compounds containing double bonds :There are aromatic and aliphatic double bonds ,and

١

aliphatic double bonds may be with conjugated or separated double bonds

*Conjugated double bonds* can be detected by Diels Alder Reaction ( D.A.R.) by forming an adducts with maleic anhydride ,each two double bonds react with one molecule of maleic .

Separated double bonds (no D.A.R.) and can be detected by  $H_2 / Ni$ , halogenations or by Each *one* double bond absorb *one* molecule of hydrogen and *one* molecule of halogen, thus, the number of double bonds can be determined .

Each *one* double bond absorb *one* molecule of hydrogen during catalyitic hydrogenation and *one* molecule of halogen during halogenation, thus, the number of double bonds and the shape of the molecule can be determined .

Also, compounds with M.F.  $C_nH_{2n+2}$  for alkane (acyclic compounds ); M.F.  $C_nH_{2n}$  for alkene and *monocyclic* compounds;

 $M.F.C_nH_{2n-2}$  for alkyne and *bicyclic* compounds ;

 $M.F.C_nH_{2n-4}$  for tricyclic compounds ;

M.F.  $C_nH_{2n-6}$  for *tetracyclic* compounds .



conjugated double bonds



separated double bonds

*Degradative oxidation* : Using oxidizing agents such as  $O_3$ , CrO<sub>3</sub>, NaOBr (Br<sub>2</sub> / NaOH), KMnO<sub>4</sub> and *total synthesis* can also be used for structure elucidation of the naturally occuring compounds.

Degradative oxidation for the double bonds using Ozonolysis ,KMnO<sub>4</sub>; in each case the final products depends on the substituents attached to the two carbons of the double bonds.

IV)Total synthesis