

Damietta University Faculty of Science Geology Department

Geothermal Course For First Year Geophysics Program Code: 103 Geoph Lecture 6:Remote Sensing For Geothermal Exploration Part1

Dr. Hatem Aboelkhair

2020

GEOTHERMAL ENERGY Trapping the Earth's Internal Heat

Remote Sensing For Geothermal Exploration Part1

Remote Sensing: Definition

- Science of measurement from a distance.
- The process of obtaining information about an object using a sensor which is physically separated from the object.
- \checkmark The acquisition of data from a distance.

Data Collection

Satellite based remote sensing Advantages: Less geometric errors (platform is stable) Disadvantages: Need to wait a time for certain event Fixed spatial resolution

Aerial surveying

Advantages: Acquire any times any events Variable spatial resolution by changing flight altitude and camera focal length <u>Disadvantages</u>: High geometric errors; require sophisticated geometric correction model Costly for specific area, specific purpose

Ground based remote sensing GBRS or Low Altitude Remote Sensing

Scientific experiment purposes (e.g. study about canopy, soil contamination, etc.)

Earth surface

© 2008 Ko Ko Lwin

What is the five senses?

"Remote" means far away. Remote sensing means sensing things from a distance. Of **our** five senses **we** use three as remote sensors when we:

- a. watch a football game from the stands (sense of sight)
- smell freshly baked bread in the oven (sense of smell)
- hear a telephone ring (sense of hearing)

What are our other two senses and why aren't they used "remotely"?

Advantages of remote sensing

- Provides a regional view (large areas)
- Provides repetitive looks at the same area
- Remote sensors "see" over a broader portion of the spectrum than the human eye
- Sensors can focus in on a very specific bandwidth in an image or a number of bandwidths simultaneously
- Provides geo-referenced, digital, data
- Some remote sensors operate in all seasons, at night, and in bad weather

Who uses remote sensing and why?

- The <u>Geologist</u>, who is interested in finding valuable minerals (minerals and oil prospecting).
- The <u>Geographer</u>, who looks for changes on the Earth' surface that need to be mapped.
- The <u>Environmentalist</u>, who wants to detect, identify and follow the movement of pollutants الملوث such as oil slicks بقعة on the ocean.

Who uses remote sensing and why?

- The Forester, who needs information about what type of trees are growing and if they have been affected by disease.
- The Farmer, who wants to keep an eye on how his crops are growing and if they've been affected by drought جفاف, floods, disease or pests وباء.
- The <u>Ship Captain</u>, who needs to find the best route through the northern ice packs.
- The Firefighter, who sends out his crews based on information about the size and movement of forest fire.

Applications of Remote Sensing

- Military operation.
- Geological Mapping.
- Geothermal.
- Geomorphology.
- Hydrology.
- Vegetation.
- Agriculture.
- Weather.
- Disaster.

Passive and Active SystemPassiveActive

Passive and Active System

Passive and Active System

1.4 Types of Remote Sensing

Passive Remote Sensing and Active Remote Sensing

Passive Remote Sensing

Remote sensing of energy naturally reflected or radiated from the terrain.

Active Remote Sensing

Remote sensing methods that provide their own source of electromagnetic radiation to illuminate the terrain. Radar is one example.

Radar is active remote sensing

Radar used by police to measure the speed of traveling vehicles is a use of active remote sensing. The radar device is pointed at a vehicle, pulses of radiation are emitted, and the reflection of that radiation from the vehicle is detected and timed.

Camera good example for passive and active remote sensing

A camera provides an excellent example of both passive and active sensors.

During a bright sunny day, enough sunlight is illuminating the targets and then reflecting toward the camera lens, that the camera simply records the radiation provided (passive mode).

Remote Sensing System

Electromagnetic Spectrum

Interaction with atmosphere

Interaction with atmosphere

- Before radiation used for remote sensing reaches the Earth's surface it has to travel through some distance of the Earth's atmosphere.
- These effects are caused by the mechanisms of scattering and absorption.

Two primary interactionScatteringAbsorption

Primary absorber are

- Water Vapor
- Carbone dioxide
- Ozone

Atmospheric windows

Atmospheric windows

Those areas of the spectrum which are not severely influenced by atmospheric absorption and thus, are useful to remote.

Interaction with target

Three forms of interaction

There are three (3) forms of interaction that can take place when energy strikes, or is **incident (I)** upon the surface. These are:

- Absorption (A);
- Transmission (T);
- Reflection (R).

The proportions of each will depend on the <u>wavelength</u> of the <u>energy</u> and the material and <u>condition of the feature</u>.

Three forms of interaction

