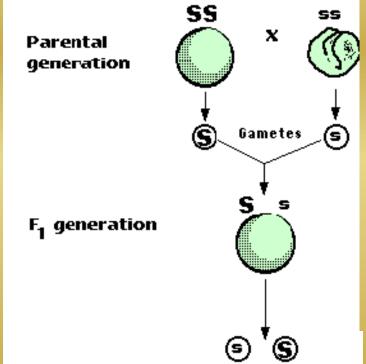
MENDELIAN GENETICS

Gregor Johan Mendel (1822 – 1884)

- Known as the Father of Modern Genetics
- He was an Austrian Monk (in Brunn)
- The modern Concepts of Genetics took birth from his pioneering
- He works were on Pisum satium (Garden Pea)
- The period of study: 1856 1864
- Published in: The annual *Proceedings of the natural History Society* of Brunn in 1866
- Title of his publication: Experiments in Plant Hybridization (German)

Mendel died as an unrecognized man, His studies remain in dark for 34 years www.easybiologyclass.com

The Experiments of Gregor Mendel


- Gregor Mendel did an experimented in which he crossbred pea plants and discovered that the traits could be passed onto another.
- Mendel's discovery with the peas is now used as a "model system."
- A model system is convenient because it may tell us how other organisms (including humans) actually function.

Mendel's Experiments

- Gregor Mendel conducted heredity experiments using common garden pea plants.
- Mendel crossed (mated) large numbers of plants.
- Mendel concluded that there were traits that always appeared (were expressed) when they were present in an organism.

Mendel's Experiments

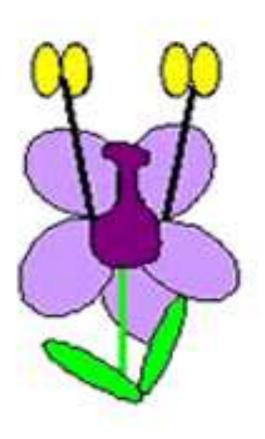
- The purebred plants are called the parent (P) generation.
- The offspring of a cross between two parent (P) generation plants are called the first filial (F₁) generation.

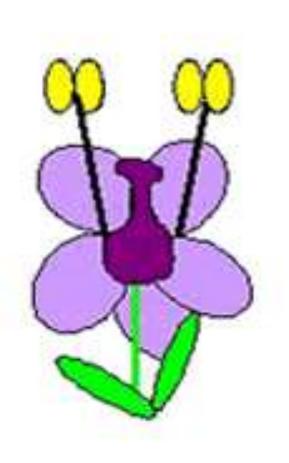
- The trait that always appears when it is present is called the **dominant** trait.
- The trait that is hidden by the dominant trait is called the **recessive** trait.

Mendel's Genetics

- Mendel's pea plants were true-breeding, meaning that if they were allowed to self pollinate, they would produce offspring identical to themselves.
- Mendel wanted to form different pea plants other than his true-breeding plants so he cross pollinated his pea plants by joining male and female reproductive cells from

different plants.

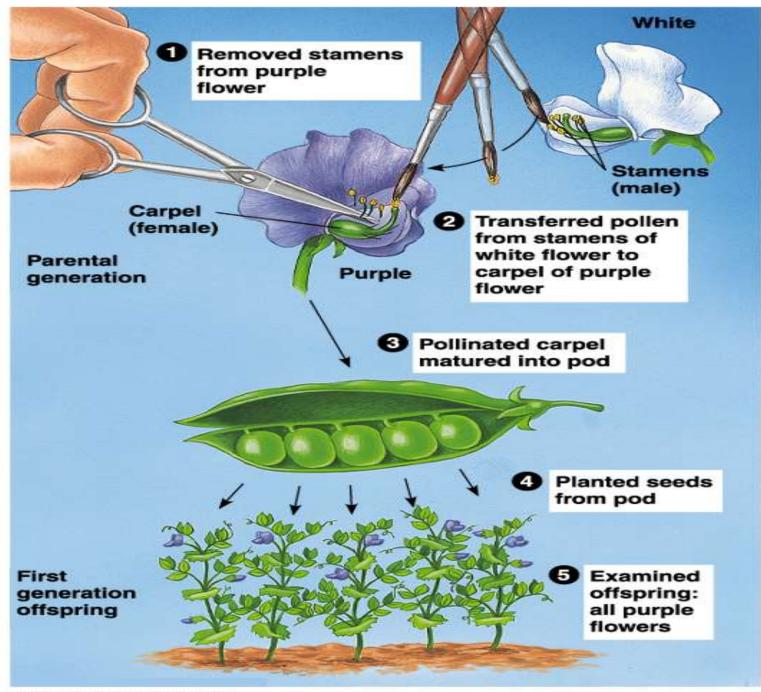




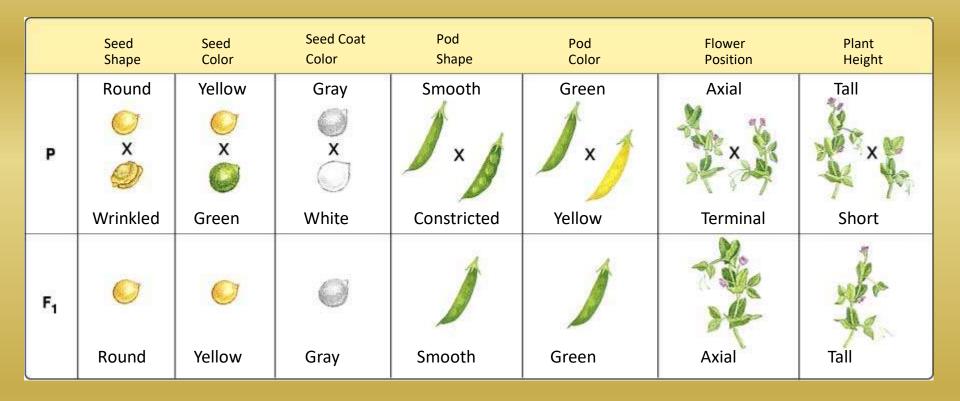
The Role of Fertilization

- Fertilization: During this process it is when the male and female reproductive join.
- <u>Trait:</u> a specific characteristic. For example: flower color!
- <u>Hybrid:</u> The offspring of parents with different traits.
- When Mendel began his
 experiment, <u>he used the</u>
 <u>pollen to cross breed them.</u>
 He knew a male reproductive
 cell was sperm and a female
 reproductive cell was an egg.

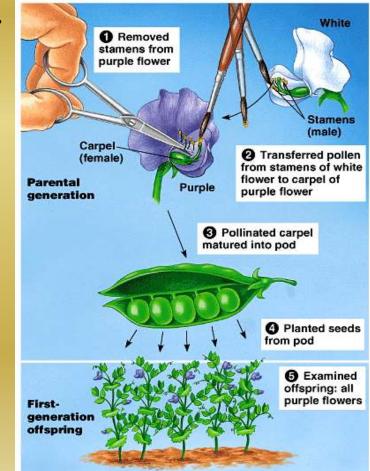
Cross Pollination


Mendel's Genetics

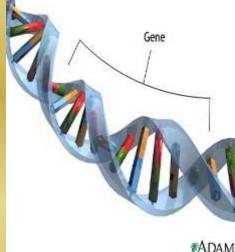
- Mendel studied 7 different pea plant traits
- Trait: a specific characteristic, such as seed color or plant height, that varies from one individual to another.
- Hybrids: are the offspring of crosses between parents with different traits
- P= parental generation
- F1= 1st son or daughter generation (1st offspring)



John Innes Foundation Historical Collections, courtesy of the John Innes Trustees. Noncommercial, educational use only.



Mendel's Seven F₁ Crosses on Pea Plants


- Pea plants have several advantages for genetics.
 - Pea plants are available in many varieties with distinct heritable features (characters) with different variants (traits).
 - Another advantage of peas is that Mendel had strict control over which plants mated with which.
 - Each pea plant has male (stamens) and female (carpal) sexual organs.
 - In nature, pea plants typically self-fertilize, fertilizing ova with their own sperm.
 - However, Mendel could also move pollen from one plant to another to cross-pollinate plants.

- In a typical breeding experiment, Mendel would cross-pollinate (hybridize) two contrasting, true-breeding pea varieties.
 - The true-breeding parents are the P generation and their hybrid offspring are the F₁ generation.
- Mendel would then allow the F₁ hybrids to selfpollinate to produce an F₂ generation.
- It was mainly Mendel's quantitative analysis of F₂ plants that revealed the two fundamental principles of heredity: the law of segregation and the law of independent assortment.

Mendel's Conclusions From His Experiments

1st: was that **biological inheritance** is determined by factors that are passed from one generation to the next. (Scientist, call the chemical factors that determine traits **genes**.)

2nd: Principal of dominance: states that some alleles are dominant and others are recessive. (Alleles: different forms of a gene)

3rd: During **gamete formation**, alleles segregate from each other so that each gamete (sex cells) carries only a single copy of each gene. Each F1 plant produces two types of gametes- those with the allele for tallness and those with the allele for shortness

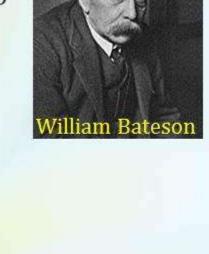
Rediscovery of Mendel's original work

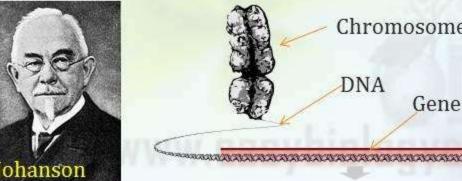
In **1900**, three scientists independently **rediscovered** the Mendel's work:

- > Carl Corens (Germany)
- > Hugo deVries (Holland)
- > Erich von Tschermak (Austia)

Mendel's findings were now know as Mendelism or Mendelian Lows of Inheritance

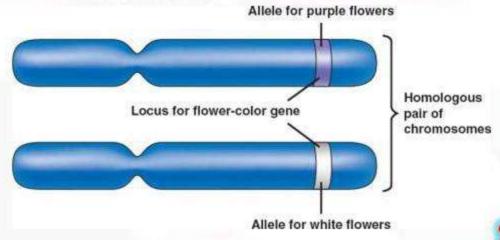
www.easybiologyclass.com


Terminologies in Genetics


The term 'Genetics' was coined by William Bateson in 1905

(1). Gene

- The term 'Gene' was coined by Johanson in 1909
- Definition: Gene is the hereditary determining factor
- Gene consists of a continuous segment of DNA
- In eukaryotes, the gene occupies in specific position on the chromosome called *locus (loci)*Chromosome



(2). Allele

- Also called allelomorphs
- Definition: Alleles are alternate forms of a gene which occupy identical loci on homologous chromosome
- Allele control the contrasting characters of same trait
- Usually alleles exists in TWO different forms:
 - 1. Dominant allele
 - 2. Recessive allele

www.easybiologyclass.com

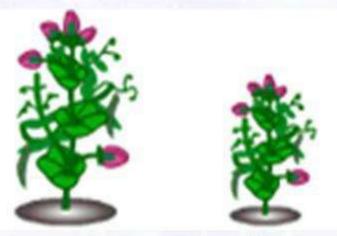
(3). Dominant and Recessive Alleles

- Dominant allele will always express
- Recessive alleles will express only in the absence of dominant allele
- Dominant allele **mask** or **suppress** the expression of recessive allele
- Dominant alleles are classically symbolized with capital letters
- Recessive alleles are symbolized with small letters
 - Trait: Height
 - Characters: Tall and Dwarf
 - Dominant: Tall (T)
 - Recessive: Dwarf (t)

www.easybiologyclass.com

Multiple Alleles

- Many genes exist in several different forms and are therefore said to have multiple alleles.
- <u>Multiple Alleles:</u> A gene with two or more alleles.
- Rabbit's coat color is an example.
- The color of a rabbit's coat is determined by one gene with at least FOUR different alleles.


Multiple Alleles

(4). Genotype and Phenotype

- Genotype: The genetic makeup (constitution) of an organism
- Phenotype: The physical features/appearance of an organism
- Phenotype is the expression of genotype
- Phenotype is produced not only by the genotype but also by the interaction between genotypes and environmental factors

Trait: Height Phenotype : Tall and Dwarf Genotype: TT or Tt and tt

ТΤ

Genetic Terms

- Genotype The genetic makeup of an organism.
- **Phenotype** The external appearance of an organism.
 - For example, an organism that looks tall can have a genotype that is pure tall or hybrid tall. This is because whenever the dominant trait is present, the organism expresses (shows) the dominant trait.

Genotype and Phenotype

- **Genotype:** genetic make-up.
- **<u>Phenotype</u>**: physical traits.
- Just because something has the same phenotype DOES NOT mean it can have the same genotype.
- The genotype of an organism is inherited, while the phenotype just solely relies on the genotype.

(5). Homozygous

A condition in which both the members of an allelic pair in the homologous chromosome are identical (either dominant or recessive alleles)

Tall		TT
Dwarf	(in)	tt

(6). Heterozygous:

- A condition in which the members of an allelic pair in the homologous chromosome are <u>NOT</u> identical (one dominant and one recessive allele)
 - Tall : **Tt**

Genetic Terms

• Homozygous Trait - Both genes for that trait are the same.

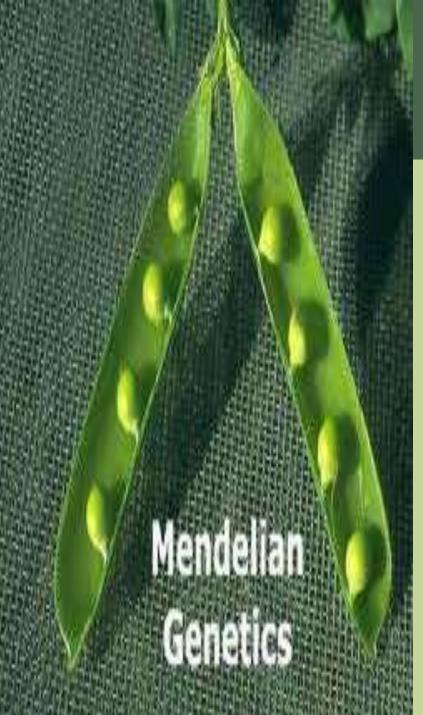
A pea plant with two genes for tallness.

• Heterozygous Trait - Both genes for that trait are not the same.

A pea plant with one gene for tallness and one for shortness.

(7). Hemizygous

- A condition when gene are present only in one copy
 - Genes on X chromosome in male (have one X and one Y Chromosome)
 - Genes on Y chromosome (only one Y chromosome in males)

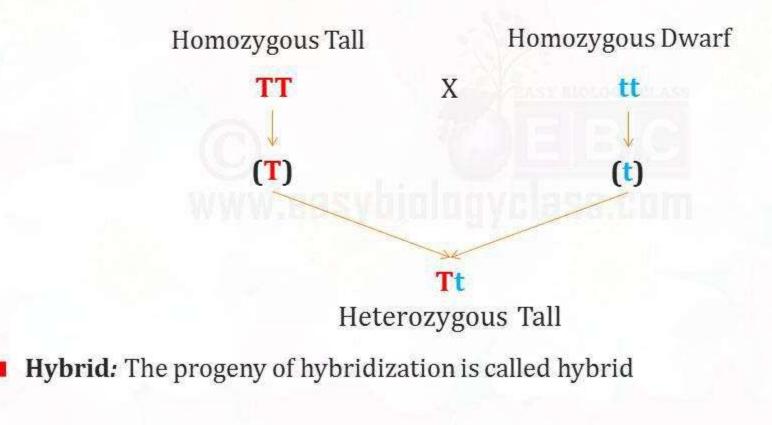

(8). Dominance

The ability of an allele to express itself phenotypically both in homozygous (TT) and in heterozygous (Tt) conditions

(9). Recessiveness:

The inability of an allele to manifest its phenotype in heterozygous (*Tt*) condition

www.easybiologyclass.com



Dominant and Recessive Alleles

- Mendel's second conclusion is called the <u>principle of dominance</u>.
- The principle of dominance states that some alleles are dominant and others are recessive.
- An organism with a recessive allele
 will express that trait when a
 dominant form isn't present.
- In Mendel's experiment, the trait for tall plants was dominant and short plants was recessive.

(10). Hybridization and Hybrid

Hybridization: The process of crossing two genetically different individuals

(11). Monohybrid

 An organism which is heterozygous with respect to only ONE pair of allele at a locus under study

Dwarf

X

(12). Dihybrid

Tall

 An organism which is heterozygous with respect to TWO pairs of alleles at two loci under study

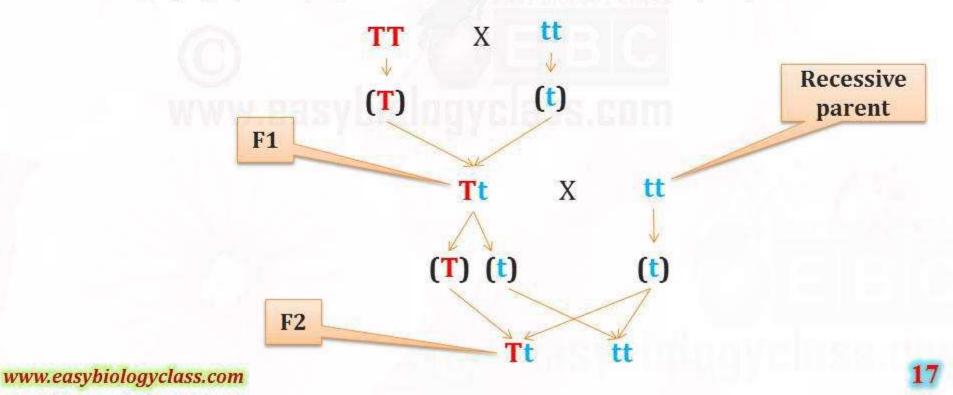
Yellow Round Seed X Green Wrinkled Seed

www.easybiologyclass.com

(13). Monohybrid Cross

A cross between two individual organism which differ from each other with respect to <u>ONE</u> pair of allele under study

Tall
TTDwarf
tt(14). Dihybrid


A cross between two individual organism which differ from each other with respect to <u>TWO</u> pairs of allele under study

> Yellow Round Seed YYRR X

Green Wrinkled Seed

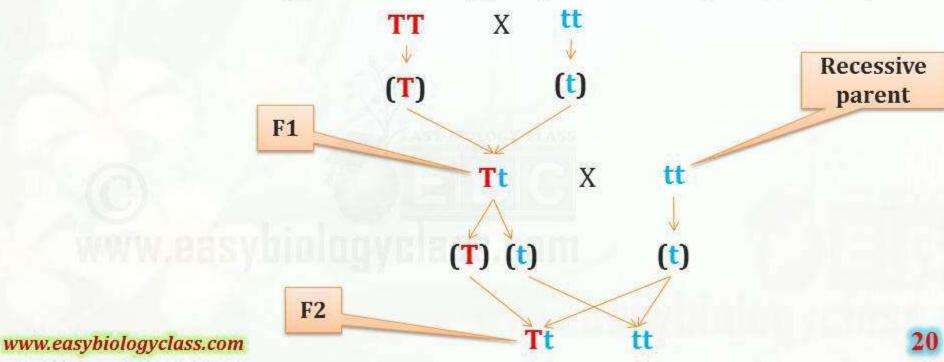
(15). F1 and F2 Generation

- F filial meaning son
- F1: First generation progeny of a hybridization
- F2: Progeny of hybrid (F1) when it is hybridized with any of its parents

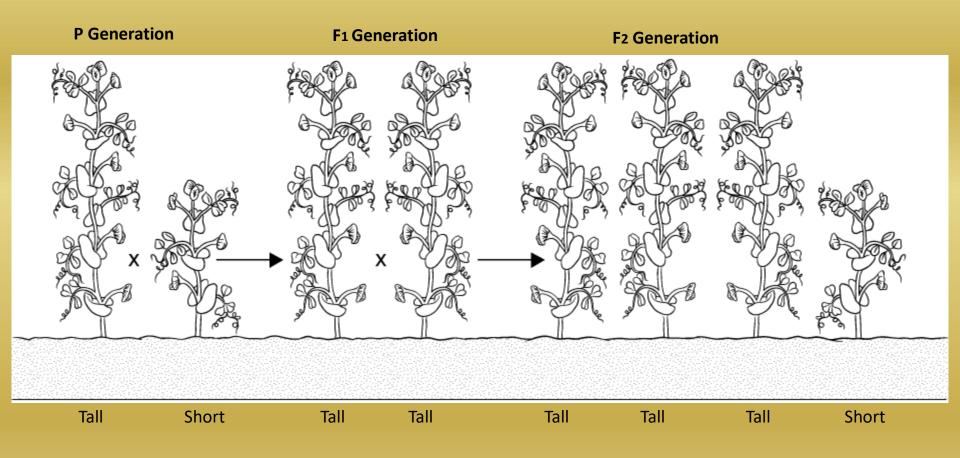
(16). Reciprocal Cross

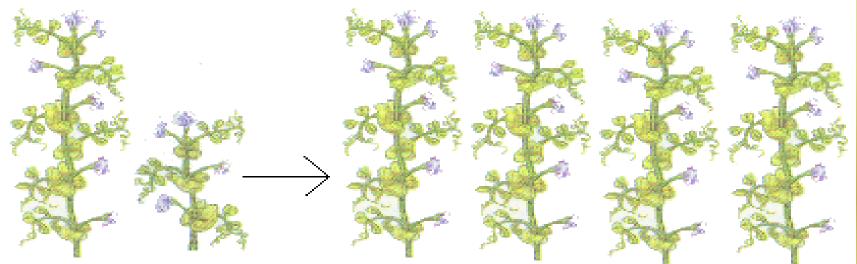
Two reverse crosses in which the sexes of the parents are interchanged

Tall ♂XDwarf ♀Dwarf ♂XTall ♀

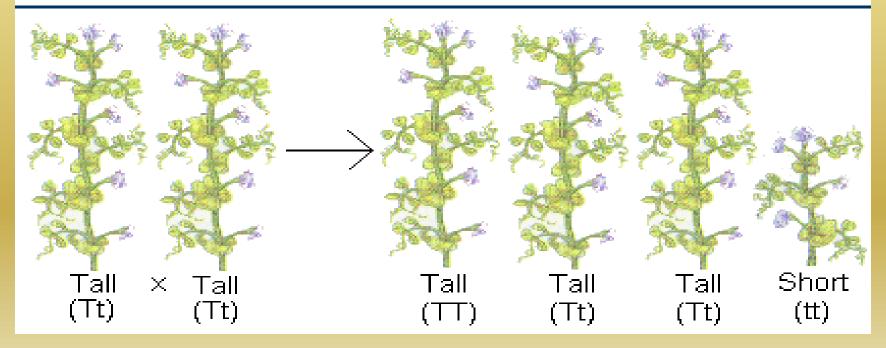

If the traits are autosomal the reciprocal cross always yield same result
 If the traits are on sex chromosomes, the reciprocal cross gives different results

(17). Backcross


- The cross of F1 offspring with one of its parents
- If F1 is crossed with dominant parent, all progenies (F2) will be dominant
- If F1 is crossed with recessive parent, individuals with both phenotype will appear in equal proportion
- The ratio of progenies produced during back cross is called back cross ratio


(18). Test Cross

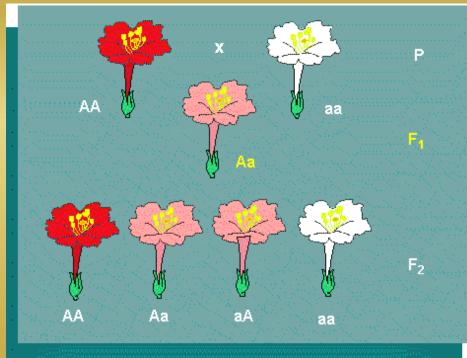
- Test cross is a type of back cross in which the F1 progeny is crossed with its double recessive parent
- Test cross is used to determine whether the individuals exhibiting dominant character are homozygous or heterozygous (to detect the genotype of F1)



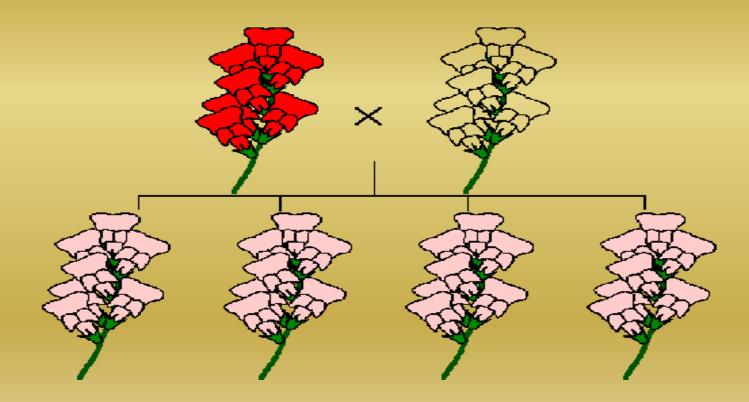
Principles of Dominance

Tall × Short (TT) (tt) All Tall Offspring (Tt)

Codominance


- <u>Codominance</u>: the phenotypes produced by both alleles are clearly expressed.
- For example, chickens will have the black and white colors that their parents had.
- In humans, a gene for protein that controls cholesterol levels in the blood, show codominance.

Co-dominance



Incomplete Dominance

 Incomplete dominance or blending inheritance occurs when the offspring shows traits that are a blend or mix of the two parents.

Incomplete Dominance

Shared Traits

- Some alleles are neither dominant nor recessive, and many traits are controlled by multiple alleles or multiple genes.
 - Incomplete Dominance: Cases in which one allele is not completely dominant over another (Ex. crosses between red flowers and white flowers are pink flowers)
 - **Co-dominance:** Cases in which both alleles contribute to the phenotype. (Ex. Feathers that are speckled with black and white)
 - **Multiple Alleles:** Many genes have more than two alleles. (Ex. A rabbit's coat color is determined by a single gene that has at least 4 different alleles.)
 - Polygenic Traits: Traits controlled by 2 or more genes. (Ex. At least 3 genes are involved in making the reddish-brown pigment in eyes of fruit flies.)

