
Theory	of	Computation

Regular	Expression	



Outline
• What	are	Regular	Expression
• Operators	in	Regular	Expressions
• Equivalence	between	Regular	Expression	and
Finite	States	Automata
– Regular	Expression	à NFA
– Regular	Language	à Regular	Expression

9/17/19 1

From	Sipser Chapter	1.3	



Regular	Expressions

• Means	of	characterizing	languages	based	on
the	regular	operators

• Examples:
– (0	È 1)0*
• A	0	or	1	followed	by	any	number	of	0’s
• Concatenation	operator	implied

–What	does	(0	È 1)*	mean?
• All	possible	strings	of	0	and	1	or	ε
• If	S =	{0,1},	then	equivalent	to	S*

9/17/19 2



Definition	of	Regular	Expression
R	is	a	regular	expression	if	R	is

1. a,	for	some	a	in	alphabet	å
2. ε
3. Æ
4. (R1	È R2),	where	R1	and	R2	are	regular	expressions
5. (R1	× R2),	where	R1	and	R2	are	regular	expressions
6. (R1*),	where	R1	is	a	regular	expression

Note:	This	is	a	recursive	definition,	common	in	computer	science
• R1and	R2	always	smaller	than	R,	so	no	issue	of	infinite

recursion
• Æmeans	language	does	not	include	any	strings	and	ε means	it

includes	the	empty	string

9/17/19 3



Operator	precedence
• *	has	precedence	over	concatenation	and	
union

• Concatenation	has	precedence	over	union
• Parentheses	may	change	the	precedence
• Example:	(0(0È1)0)*È0

• R1	=	(0(0È1)0)*;	R2=	0
• R1ÈR2

• R1	=	(R3)*
• R4	=	0;	R5	=	0È1;	R6=	0

• R3=R4×R5×R6
• R7=0;	R8=	1;

• R5	=	R7ÈR8

Is	this	different	from	
(0(0È1)0)*È(0) ?

Is	this	different	from	
(00È10)*È0 ?

9/17/19 4



Additional	notation	for	*
• R+ =	R*R	=	RR*
– Concatenation	of	at	least	one	string	from	R

• Rk
– Shor	hand	notation	for	concatenation	of	k	strings
from	R

• R+Èε= R*

9/17/19 5



Some	Examples

• 0*10*	=
– {w|	w	contains	a	single	1}

• å*1å*=
– {w|	w	has	at	least	one	1}

• 01	È 10	=
– {01,	10}

• (0	È ε)(1	È ε)	=
– {ε,	0,	1,	01}

9/17/19 6



Testing	your	understanding

• RÈ ⌀ =	R
• Rε=	R
• RÈε =	R	if	ε in	R	or	{R, ε}	otherwise
• R⌀ =	⌀

9/17/19 7



Equivalence	of	Regular	Expressions	and	FA

Theorem:	A	language	is	regular	if	and	only	if	
some	regular	expression	describes	it

Two	directions	so	we	need	to	prove:
– If	a	language	is	described	by	a	regular	expression
then	it	is	regular

– If	a	language	is	regular	then	there	exists	a	regular
expression	that	that	describes	it

9/17/19 8



Proof:	Regular	Expression	è Regular	Language

• Proof	idea:	Given	a	regular	expression	R
describing	a	language	L,	we	will….
– Show	that	some	FA	recognizes	it
– Use	NFA	since	may	be	easier	and	equivalent	to	DFA

• How	do	we	do	this?
–We	will	use	definition	of	a	regular	expression	and
show	that	we	can	build	a	FA	covering	each	step.
• Steps	1,2	and	3	of	definition	(handle	alphabet	symbols,
ε,	and	Æ )
• Steps	4,5	and	6	(handle	union,	concatenation,	and	star)

9/17/19 9



Proof:	Regular	Expression	è Regular	Language

For	steps	1-3	we	construct	the	FA	below.	As	a	
reminder:

1. a,	for	some	a	in	alphabet	å
2. ε
3. Æ

a
ε Æ

a

9/17/19 10



Proof	Continued

• For	steps	4-6	(union,	concatenation	and	star)
we	use	the	result	we	previously	obtained
showing	that	FA	are	closed	under	union,
concatenation,	and	star

• We	have	shown	how	to	convert	a	Regular
Expression	into	a	FA	which	recognizes	the
same	language

• By	corollary,	said	language	is	regular.

9/17/19 11



Example:	Regular	Expression	è NFA

Convert	(abÈ a)*	to	an	NFA	
(example	1.56	page	68)
– Outline	of	required	steps:
• Handle	a
• Handle	b
• Handle	ab
• Handle	abÈ a
• Handle	(abÈ a)*

– Sometimes	ε-transitions	may	appear	unnecessary
of	confusing
• Be	systematic!	Always	start	including	ε-transitions!

9/17/19 12



Equivalence	of	Regular	Expressions	and	FA

Theorem:	A	language	is	regular	if	and	only	if	
some	regular	expression	describes	it

Two	directions	we	need	to	prove:
– If	a	language	is	described	by	a	regular	expression
then	it	is	regular

– If	a	language	is	regular,	then	there	exists	a	regulat
expression	that	describes	it

9/17/19 13



Proof:	Regular	Language	è Regular	Expression

• Proof	strategy:
– A	regular	language	is	accepted	by	a	DFA
–We	need	to	show	that	can	convert	any	DFA	to	a
regular	expression

• Two	steps:
–We	construct	a	Generalized	Non-deterministic
Finite	State	Automaton	(GNFA)	from	a	DFA

–We	convert	a	GFA	into	a	Regular	Expression

9/17/19 14



GNFA	in	Special	Form

• GFAs	are	NFAs	where	transition	may	be	labeled	with
regular	expressions rather	than	just	symbols	from	å

• GFAs	in	special	form	have	the	following	properties
– One	start	state	with	outgoing	arrows	going	to	all
other	states	but	no	incoming	arrows

– One	single	accept	states	with	no	outgoing	arrows
and	arrows	incoming	from	any	other	state

– All	other	states	have	arrows	incoming	and
outgoing	to	every	state,	including	themselves

9/17/19 15



DFA	à GNFA

1. Add	a	new	start	state	with	one	arrow	labeled	with
ε to	old	start	state

2. Add	new	accept	state	with	arrows	labeled	with		ε
from	all	old	accept	states

3. If	any	arrow	from	remaining	states	has	multiple
labels,	replace	them	with	equivalent	Regular
Expression
E.g.,	a,b ->	a		È b

4. Add	remaining	arrows	marked	as		Æ

9/17/19 16



DFA	à GNFA	example

1
a

2
a, b

b

1
a

2 a È b

b

S
ε

ε

Edges	marked	with	Æ are	redundant	and	may	be	confusing!

9/17/19 17

A



GNFA	à Regular	Expression

• We	proceed	in	a	series	of	steps	reducing	the
number	of	states	of	the	GFA	to	2	(start	and	
accept)
• The	Regular	Expression	left	on	the	only
remaining	arrow	is	equivalent	to	the	GFA	and,	
hence,	the	DFA	

9/17/19 18



GFA	à Regular	Expression

• While	GNFA	has	states	other	than	“Start”	and
“Accept”
– Pick	a	state	q	and	remove it	from	the	GNFA
– Repair	the	transitions	by	combining	the	regular
expressions	by	concatenation

1
a

2 a È b

b

S
ε

ε

S

2 a È b

a*b

ε

S

a*b(a È b)*

9/17/19 19

A A

A



Formalization	of	the	proof

The	textbook	provides	a	rigorous	proof	by	induction:
– CONVERT:	procedure	to	transform	GNFA	G	into

Regular	Expression
– Statement:	L(G)	=	CONVERT(G)
• Base:	G	has	only	2	states
• Inductive	hypothesis:	Statement	holds	if	G	has	i>=	2	states
• Inductive	step:	we	show	it	holds	if	G	has	i+1	states

1. Let	G’	denote	the	version	of	G	with	i states	obtained	after	one
application	of	CONVERT(G)

2. We	argue	that	if	a	string	is	accepted	by	G	it	will	also	be	accepted
by	G’	and	vice	versa

3. Apply	inductive	hypothesis

9/17/19 20



Equivalence	of	Regular	Expressions	and	FA

Theorem:	A	language	is	regular	if	and	only	if	
some	regular	expression	describes	it

Two	directions	we	need	to	prove:
– If	a	language	is	described	by	a	regular	expression
then	it	is	regular

– If	a	language	is	regular	then	there	exisits a	regular
expression	that	describes	it

9/17/19 21


