
 Computer 
Graphics



Transformations 



Geometric Transformations 
as Matrices

• Operations to arrange objects in a scene, view them with
cameras, and get them on a screen all can be encoded
with linear algebra

• Geometric operations: rotation, translation, scaling,
projection, and more…

• These transforms operate differently on points,
displacement vectors, and surface normals



2D Linear Transformations

• We can transform points in a 2D coordinate system by
multiplying the point (a vector) by a matrix (the
transformation):

• e.g. Multiply the matrix A by x = (x,y), or Ax:

• Such transformations are called linear because they
satisfy the relationship that A(ax1+x2) = aAx1 + Ax2



Scaling

• Can be uniform, where sx = sy.



Scaling
• Can also be nonuniform, where sx ≠ sy.



Shearing

• Horizontal shearing shifts each 
row based on the y value.



Shearing

• Vertical shearing shifts each
column based on the x value.



Rotation
• Rotate counterclockwise by

an angle 𝜙 about the origin.



Rotation
• Clockwise rotations can also be

represented by negative angles



Rotations are Always 
Orthogonal Matrices

• Recall: An orthogonal matrix always has columns and
rows that are orthogonal unit vectors

• Implication: Have the effect of rotating the coordinate axes
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Reflection



Reflection



Composition
• Transformations can be composed to perform

combinations of transformations.

• For example, one could first rotate with matrix R and then
scale with matrix S

• Applied to a point v1, this would be

• v2 = Rv1 to rotate and then

• v3 = Sv2 = SRv1

              = (SR)v1 = Tv1 where T = SR



Order Matters for 
Composition

• First rotate, then non-uniform scale

• Rotate:

• Scale:

• Combined:

•



• First non-uniform scale, then rotate

• Rotate:

• Scale:

• Combined:

•
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Decomposition

• Recall: a symmetric matrix is any matrix M such that M = M𝐓

• Let’s consider a special type of composition, of the form RSRT

• Motivation: scaling on arbitrary axis, e.g. rotate, then scale, 
then rotate back

• Example: 



Decomposition
• RSRT is always a symmetric matrix

• Why?  (RSR𝐓)𝐓 = R𝐓𝐓S𝐓R𝐓 = RSR𝐓)

• Any symmetric metric A can be decomposed to A = RSR𝐓

• All rotations R, happen to be orthogonal matrices.

• Any symmetric transformation matrix is a scale in some axis



Decomposition
• Any arbitrary matrix can be decomposed to A = USVT

where U and V are orthogonal matrices (but not 
necessarily rotations)

• This is called singular value decomposition

• This has a similar interpretation, but with different 
rotations before/after the scale



Some Consequences
All shears are USVT



Some Consequences
All shears are USVT

Any rotation is three shears
(Paeth decomposition)



Inversion
• Interpreting a matrix M as a geometric transformation, how

might we undo the operation?

• We can apply the inverse transformation, it turns out by
applying the inverse matrix, M-1

• Recall that MM-1 = M-1M = I, the identity matrix

• This is true for all operations we’ve discussed, e.g. scale by s is
undone by scale of 1/s, rotate by angle 𝜙 is undone by rotate of
angle -𝜙

• Key point: the algebraic inverse is the geometric inverse



3D Linear 
Transformations



3D Linear Transformations

• We can transform points in a 3D coordinate system by
multiplying the point (a vector) by a matrix (the
transformation), just like in 2D!

• The only difference is we will use 3x3 matrices A by
x = (x,y,z), or Ax, e.g. for scale and shear:



Rotations in 3D

• In 2D, a rotation is about a point


• In 3D, a rotation is about an axis

2D 3D

convention: positive 
rotation is CCW 

when axis vector is 
pointing at you

convention: positive 
rotation is CCW



Rotations about 3D Axes

• In 3D, we need to pick an axis to rotate about

• And we can pick any of the three axes



Building Complex Rotations 
from Axis-Aligned Rotations

• Rotations about x, y, z
are sometimes called 
Euler angles

• Build a combined 
rotation using matrix 
composition
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Arbitrary Rotations

• To rotate about any axis: we change the coordinate space 
we are working in, using orthogonal matrices.


• Consider orthogonal matrix Ruvw, form by taking three 
orthogonal vectors 𝐮, 𝐯, and 𝐰:
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Arbitrary Rotations
• What happens when we apply Ruvw to any of the basis 

vectors, e.g.:

• But this means that if we apply Ruvw𝐓 to the Cartesian 
coordinate vectors, e.g.:



Arbitrary Rotations
• This means that if we want to rotation around an arbitrary axis, we need

only to use a change of coordinates

• E.g. to rotate around a direction 𝐰, we

• Compute orthogonal directions 𝐮, 𝐯, and 𝐰

• Change the 𝐮𝐯𝐰 axes to be xyz (Ruvw)

• Apply a rotate-z()

• Finally, change the axes back to 𝐮𝐯𝐰 (Ruvw𝐓)

RuvwRuvw𝐓 rotate-z()



Transformations for Shapes 
in Computer Graphics

• These transformations also apply to transforming 
geometric objects
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Transformations for Shapes 
in Computer Graphics

• These transformations also apply to transforming
geometric objects

• Parametric forms:

• We can transform the points directly, e.g. M(p(t)) to 
transform the parametric positions p(t)

• Implicit forms:

• We invert the transform and test the predicate, e.g. if
f(M-1(p)) = 0 then p is on the transformed implicit shape


