Computer
Graphics

Lecture 5

Transformations

Geometric Transformations
as Matrices

e QOperations to arrange objects in a scene, view them with
cameras, and get them on a screen all can be encoded
with linear algebra

e Geometric operations: rotation, translation, scaling,
projection, and more...

 These transforms operate differently on points,
displacement vectors, and surface normals

2D Linear Transformations

e \We can transform points in a 2D coordinate system by
multiplying the point (a vector) by a matrix (the
transformation):

e e.g. Multiply the matrix A by x = (x,y), or Ax:

ailp Qai2 4 a1 +— a2y
a1 a2 | 1Y = A21 T T Q22Y

* Such transformations are called /inear because they
satisfy the relationship that A(axi1+x2) = aAx1 + AXz

Scaling

e Can be uniform, where sy = sy.

Sy T
SyY

05 0

Scaling

e Can also be nonuniform, where sx # sy.

Shearing

* Horizontal shearing shifts each

row based on the y value. Shear-x(s) —

Shearing

shear-y(s) =

e \ertical shearing shifts each
column based on the x value.

Rotation

* Rotate counterclockwise by
an angle ¢ about the origin. [

rotate(¢) = [

COS

sin

CNERNE

cos ¢
sin ¢

—sin 7| [0.707
cos |]0.707

—sin ¢
CoS @

—0.707
0.707

|
|

- (.707,.707)

707 707

>

(-.707,.707)

707 —.707)

Rotation . - |4~

sin¢g$ cos ¢

* Clockwise rotations can also be |cos 5 —sin 5| [0.866 0.5]
represented by negative angles | sin 5 cos &~ —0.5 0.866

oD

Rotations are Always
Orthogonal Matrices

* Recall: An orthogonal matrix always has columns and
rows that are orthogonal unit vectors

* |Implication: Have the effect of rotating the coordinate axes

(-.707,.707)

- (.707,.707)

707 —.707
707 707

-

Rotations are Always
Orthogonal Matrices

* Recall: An orthogonal matrix always has columns and
rows that are orthogonal unit vectors

* |Implication: Have the effect of rotating the coordinate axes

(-.707,.707)

- (.707,.707)

707 —.707
707 707

Rotations are Always
Orthogonal Matrices

* Recall: An orthogonal matrix always has columns and
rows that are orthogonal unit vectors

* |Implication: Have the effect of rotating the coordinate axes

(-.707,.707)

_ (.707,.707)

707 —.707
707 707

Rotations are Always
Orthogonal Matrices

* Recall: An orthogonal matrix always has columns and
rows that are orthogonal unit vectors

* |Implication: Have the effect of rotating the coordinate axes

(-.707,.707)

_ (.707,.707)

707 —.707
707 707

Reflection

reflect-y =

Reflection

A

b4

reflect-x =

Composition

 Transformations can be composed to perform
combinations of transformations.

e For example, one could first rotate with matrix R and then
scale with matrix S

* Applied to a point v4, this would be
e v2 = Rvy to rotate and then

* v3 = Sv2 = SRvq
= (SR)v1 = Tvi where T = SR

Order Matters for
Composition

e First rotate, then non-uniform scale

e Rotate:

0.707 —-0.707
0.707 0.707

e Scale:
1 0
0 0.5
e Combined:

1 0 (]0.707 —-0.707 | _ (0.707 -0.707
0 0.5(|0.707 0.707| |0.353 0.353

!
fy 07

v
J 7

Order Matters for
Composition

e First non-uniform scale, then rotate

e Rotate:

0.707 —-0.707
0.707 0.707

e Scale:
1 0
0 0.5
e Combined:

0.707 —0.707 {1 0 | _ [0.707 —0.353
0.707 0.707][0 0.5 [0.707 0.353

|

Scale

Rotate

Decomposition

e Recall: a symmetric matrix is any matrix M such that M = MT

e Let’s consider a special type of composition, of the form RSRT

* Motivation: scaling on arbitrary axis, e.g. rotate, then scale,
then rotate back

e Example: rotate(—45°)scale(1.5, 1)rotate(45°)

1.25 —0.25
—0.25 1.25

Decomposition

 RSRT is always a symmetric matrix
e Why? (RSRT)T = RTTSTRT = RSRT)

e Any symmetric metric A can be decomposed to A = RSRT

* All rotations R, happen to be orthogonal matrices.

* Any symmetric transformation matrix is a scale in some axis

RT

an)

0y V»y

]

-
_

Vi

[/

SOIZ

01V

Decomposition

* Any arbitrary matrix can be decomposed to A = USVT
where U and V are orthogonal matrices (but not
necessarily rotations)

* This is called singular value decomposition

* This has a similar interpretation, but with different
rotations before/after the scale

Vi

VT

S

/

L)

L/

NP

(e

S|

Some Consequences

All shears are USVT

~

Rotate (-58.3°)

Rotate (31.7°)

Some Consequences

All shears are USVT

Rotate (-58.3°)

~

Rotate (31.7°)

Shear

Shear |

A |

Any rotation is three shears
(Paeth decomposition)

Inversion

Interpreting a matrix M as a geometric transformation, how
might we undo the operation?

We can apply the inverse transformation, it turns out by
applying the inverse matrix, M-

e Recall that MM-1 = M-TM = I, the identity matrix

This is true for all operations we’ve discussed, e.g. scale by s is
undone by scale of 1/s, rotate by angle ¢ is undone by rotate of

angle -¢

Key point: the algebraic inverse is the geometric inverse

3D Linear
Transformations

3D Linear Transformations

 \We can transform points in a 3D coordinate system by
multiplying the point (a vector) by a matrix (the
transformation), just like in 2D!

e The only difference is we will use 3x3 matrices A by
X = (X,y,2), or Ax, e.g. for scale and shear:

(s, 0 0 |
scale(sz,8,,8;) = |0 s, 0
_0 0 9z
(1 d, d,
shear—x(dy,dz) =10 1 0
0 0 1,

Rotations in 3D

e |In 2D, a rotation is about a point

e In 3D, a rotation is about an axis

-)
convention: positive
convention: positive) rotation i1s CCW
rotation is CCW when axis vector is
pointing at you
_ _J

2D 3D

Rotations about 3D Axes

e |In 3D, we need to pick an axis to rotate about

(cos¢p —sing 0]
rotate-z(¢) = [singp cos¢ 0
0 0 |

e And we can pick any of the three axes

1 0 0
rotate-x(¢) = [0 cos¢ —sin ¢
|0 sin¢gp cos¢ _
[cos¢p 0 sing
rotate-y(¢) = 0 1 O
| —sin¢g 0 cos ¢ _

Building Complex Rotations
from Axis-Aligned Rotations

Pan Tilt Roll

 Rotations about x, y, z
are sometimes called
Euler angles

e Build a combined
rotation using matrix
composition

Ishikawa Watanabe Laboratory

Wikipedia

Arbitrary Rotations

e To rotate about any axis: we change the coordinate space
we are working in, using orthogonal matrices.

e Consider orthogonal matrix Ruw, form by taking three
orthogonal vectors u, v, and w:

Arbitrary Rotations

e To rotate about any axis: we change the coordinate space
we are working in, using orthogonal matrices.

e Consider orthogonal matrix Ruw, form by taking three
orthogonal vectors u, v, and w:

Property of orthogonal vectors:
u-u=v:-v=w-w=1
u-v=v-w=w-u=_00

Arbitrary Rotations

e To rotate about any axis: we change the coordinate space
we are working in, using orthogonal matrices.

e Consider orthogonal matrix Ruw, form by taking three
orthogonal vectors u, v, and w:

Property of orthogonal vectors:

u-u=v-v=w-w=1
Ruvw = v

u-v=v-w=w-u=20

Arbitrary Rotations

e To rotate about any axis: we change the coordinate space
we are working in, using orthogonal matrices.

e Consider orthogonal matrix Ruw, form by taking three
orthogonal vectors u, v, and w:

Property of orthogonal vectors:

Ly Yu Zu
— | Ly Yy Zy
Lw Yw 2w

U'u:V'VZW-W=]_ R
uvw
u-v=v-w=w-u=20

Arbitrary Rotations

* What happens when we apply Ruww to any of the basis
vectors, e.g.:

‘u-u | 1
Rukuz V-u = |0 =x
W - u | | 0

e But this means that if we apply RuwT to the Cartesian
coordinate vectors, e.q.:

Ty Ty Ty 0 Ty

T

Ruva — Y Yv Yuw 1l =y | =V
2y 2y Zw] LO | 2y _

Arbitrary Rotations

* This means that if we want to rotation around an arbitrary axis, we need
only to use a change of coordinates

e E.g. to rotate around a direction w, we

Compute orthogonal directions u, v, and w

Change the uvw axes to be xyz (Ruww)

Apply a rotate-z()

Finally, change the axes back to uvw (Ruvw?)

T, T, Ty | [cOos¢ —sing O] [z, v, 24]
Yu Yo Yw | |SINP cosg O |zy Y 2y
2y 2y 2wl | O 0 1] LZw Y 2w

RuvwT rotate-z() Ruvw

Transformations for Shapes
iIn Computer Graphics

e These transformations also apply to transforming
geometric objects

Transformations for Shapes
iIn Computer Graphics

e These transformations also apply to transforming
geometric objects

e Parametric forms:

Transformations for Shapes
iIn Computer Graphics

e These transformations also apply to transforming
geometric objects

Parametric forms:

* We can transform the points directly, e.g. M(p(t)) to
transform the parametric positions p(t)

Transformations for Shapes
iIn Computer Graphics

e These transformations also apply to transforming
geometric objects

e Parametric forms:

* We can transform the points directly, e.g. M(p(t)) to
transform the parametric positions p(t)

e |Implicit forms:

Transformations for Shapes
iIn Computer Graphics

e These transformations also apply to transforming
geometric objects

e Parametric forms:

* We can transform the points directly, e.g. M(p(t)) to
transform the parametric positions p(t)

e |Implicit forms:

e \We invert the transform and test the predicate, e.q. if
f(M-1(p)) = 0 then p is on the transformed implicit shape

