Computer Graphics

Lecture 5

Transformations

Geometric Transformations as Matrices

- Operations to arrange objects in a scene, view them with cameras, and get them on a screen all can be encoded with linear algebra
 - Geometric operations: rotation, translation, scaling, projection, and more...
- These transforms operate differently on points, displacement vectors, and surface normals

2D Linear Transformations

- We can transform points in a 2D coordinate system by multiplying the point (a vector) by a matrix (the transformation):
- e.g. Multiply the matrix A by $\mathbf{x} = (x,y)$, or Ax:

$$egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix} egin{bmatrix} x \ y \end{bmatrix} = egin{bmatrix} a_{11}x + a_{12}y \ a_{21}x + a_{22}y \end{bmatrix}$$

Such transformations are called *linear* because they satisfy the relationship that A(ax₁+x₂) = aAx₁ + Ax₂

Scaling

• Can be uniform, where $s_x = s_y$. $\begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} s_x x \\ s_y y \end{bmatrix}$

Scaling

• Can also be nonuniform, where $s_x \neq s_y$.

Shearing

shear- $\mathbf{x}(s) = \begin{vmatrix} 1 & s \\ 0 & 1 \end{vmatrix}$

• Horizontal shearing shifts each row based on the y value.

y 1 1 х х

Shearing

 $ext{shear-y}(s) = egin{bmatrix} 1 & 0 \ s & 1 \end{bmatrix}$

• Vertical shearing shifts each column based on the x value. y 1 0 1 х X

Rotation

• Rotate counterclockwise by an angle ϕ about the origin.

$$\mathrm{rotate}(\phi) = egin{bmatrix} \cos \phi & -\sin \phi \ \sin \phi & \cos \phi \end{bmatrix} \ \cos rac{\pi}{4} & -\sin rac{\pi}{4} \ \sin rac{\pi}{4} & \cos rac{\pi}{4} \end{bmatrix} = egin{bmatrix} 0.707 & -0.707 \ 0.707 & 0.707 \end{bmatrix}$$

Rotation

• Clockwise rotations can also be represented by negative angles

$$\mathrm{rotate}(\phi) = egin{bmatrix} \cos \phi & -\sin \phi \ \sin \phi & \cos \phi \end{bmatrix} \ \begin{bmatrix} \cos rac{-\pi}{6} & -\sin rac{-\pi}{6} \ \sin rac{-\pi}{6} & \cos rac{-\pi}{6} \end{bmatrix} = egin{bmatrix} 0.866 & 0.5 \ -0.5 & 0.866 \end{bmatrix}$$

- Recall: An orthogonal matrix always has columns and rows that are orthogonal unit vectors
- Implication: Have the effect of rotating the coordinate axes

- Recall: An orthogonal matrix always has columns and rows that are orthogonal unit vectors
- Implication: Have the effect of rotating the coordinate axes

- Recall: An orthogonal matrix always has columns and rows that are orthogonal unit vectors
- Implication: Have the effect of rotating the coordinate axes

- Recall: An orthogonal matrix always has columns and rows that are orthogonal unit vectors
- Implication: Have the effect of rotating the coordinate axes

Reflection reflect-y = $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$

Reflection

Composition

- Transformations can be **composed** to perform combinations of transformations.
- For example, one could first rotate with matrix R and then scale with matrix S
- Applied to a point v_1 , this would be
 - $v_2 = Rv_1$ to rotate and then
 - $\mathbf{v}_3 = S\mathbf{v}_2 = SR\mathbf{v}_1$ = (SR) $\mathbf{v}_1 = T\mathbf{v}_1$ where T = SR

Order Matters for Composition

- First rotate, then non-uniform scale
- Rotate:

 $\begin{bmatrix} 0.707 & -0.707 \\ 0.707 & 0.707 \end{bmatrix}$

• Scale:

$$\begin{bmatrix} 1 & 0 \\ 0 & 0.5 \end{bmatrix}$$

• Combined:

$$\begin{bmatrix} 1 & 0 \\ 0 & 0.5 \end{bmatrix} \begin{bmatrix} 0.707 & -0.707 \\ 0.707 & 0.707 \end{bmatrix} = \begin{bmatrix} 0.707 & -0.707 \\ 0.353 & 0.353 \end{bmatrix}$$

Order Matters for Composition

- First non-uniform scale, then rotate
- Rotate:

 $\begin{bmatrix} 0.707 & -0.707 \\ 0.707 & 0.707 \end{bmatrix}$

• Scale:

$$\begin{bmatrix} 1 & 0 \\ 0 & 0.5 \end{bmatrix}$$

• Combined:

$$\begin{bmatrix} 0.707 & -0.707 \\ 0.707 & 0.707 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0.5 \end{bmatrix} = \begin{bmatrix} 0.707 & -0.353 \\ 0.707 & 0.353 \end{bmatrix}$$

Decomposition

- Recall: a symmetric matrix is any matrix M such that $M = M^T$
- Let's consider a special type of composition, of the form RSR^T
 - Motivation: scaling on arbitrary axis, e.g. rotate, then scale, then rotate back
 - Example: rotate(-45°)scale(1.5, 1)rotate(45°)

$$\begin{bmatrix} 1.25 & -0.25 \\ -0.25 & 1.25 \end{bmatrix}$$

Decomposition

- RSR^T is always a symmetric matrix
 - Why? $(RSR^T)^T = R^T S^T R^T = RSR^T$
- Any symmetric metric A can be decomposed to A = RSR^T
 - All rotations R, happen to be **orthogonal matrices**.
- Any symmetric transformation matrix is a scale in some axis

Decomposition

- Any arbitrary matrix can be decomposed to A = USV^T where U and V are orthogonal matrices (but not necessarily rotations)
 - This is called **singular value decomposition**
- This has a similar interpretation, but with different rotations before/after the scale

Some Consequences

Some Consequences

(Paeth decomposition)

Inversion

- Interpreting a matrix M as a geometric transformation, how might we undo the operation?
- We can apply the inverse transformation, it turns out by applying the inverse matrix, M⁻¹
 - Recall that $MM^{-1} = M^{-1}M = I$, the identity matrix
- This is true for all operations we've discussed, e.g. scale by s is undone by scale of 1/s, rotate by angle ϕ is undone by rotate of angle - ϕ
- **Key point:** the algebraic inverse *is* the geometric inverse

3D Linear Transformations

3D Linear Transformations

- We can transform points in a 3D coordinate system by multiplying the point (a vector) by a matrix (the transformation), just like in 2D!
- The only difference is we will use 3x3 matrices A by x = (x,y,z), or Ax, e.g. for scale and shear:

$$ext{scale}ig(s_x,s_y,s_zig) = egin{bmatrix} s_x & 0 & 0 \ 0 & s_y & 0 \ 0 & 0 & s_z \end{bmatrix} \ ext{shear-x}ig(d_y,d_zig) = egin{bmatrix} 1 & d_y & d_z \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$$

Rotations in 3D

- In 2D, a rotation is about a point
- In 3D, a rotation is about an axis

Rotations about 3D Axes

• In 3D, we need to pick an axis to rotate about

$$\mathrm{rotate\text{-}z}(\phi) = egin{bmatrix} \cos \phi & -\sin \phi & 0 \ \sin \phi & \cos \phi & 0 \ 0 & 0 & 1 \end{bmatrix}$$

• And we can pick any of the three axes

$$\mathrm{rotate}\mathrm{-x}(\phi) = egin{bmatrix} 1 & 0 & 0 \ 0 & \cos \phi & -\sin \phi \ 0 & \sin \phi & \cos \phi \end{bmatrix} \ \mathrm{rotate}\mathrm{-y}(\phi) = egin{bmatrix} \cos \phi & 0 & \sin \phi \ 0 & 1 & 0 \ -\sin \phi & 0 & \cos \phi \end{bmatrix}$$

Building Complex Rotations from Axis-Aligned Rotations

- Rotations about x, y, z are sometimes called Euler angles
- Build a combined rotation using matrix composition

- To rotate about any axis: we change the coordinate space we are working in, using orthogonal matrices.
- Consider orthogonal matrix R_{uvw}, form by taking three orthogonal vectors **u**, **v**, and **w**:

- To rotate about any axis: we change the coordinate space we are working in, using orthogonal matrices.
- Consider orthogonal matrix R_{uvw}, form by taking three orthogonal vectors **u**, **v**, and **w**:

Property of orthogonal vectors:

- $\mathbf{u} \cdot \mathbf{u} = \mathbf{v} \cdot \mathbf{v} = \mathbf{w} \cdot \mathbf{w} = 1$
- $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{u} = 0$

- To rotate about any axis: we change the coordinate space we are working in, using orthogonal matrices.
- Consider orthogonal matrix R_{uvw}, form by taking three orthogonal vectors **u**, **v**, and **w**:

Property of orthogonal vectors:

$$\mathbf{u} \cdot \mathbf{u} = \mathbf{v} \cdot \mathbf{v} = \mathbf{w} \cdot \mathbf{w} = 1$$

 $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{u} = 0$
 $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{u} = 0$
 \mathbf{w}

- To rotate about any axis: we change the coordinate space we are working in, using orthogonal matrices.
- Consider orthogonal matrix R_{uvw}, form by taking three orthogonal vectors u, v, and w:

Property of orthogonal vectors:

$$\mathbf{u} \cdot \mathbf{u} = \mathbf{v} \cdot \mathbf{v} = \mathbf{w} \cdot \mathbf{w} = 1$$

 $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{u} = 0$
 $\mathbf{R}_{uvw} = \begin{bmatrix} x_u & y_u & z_u \\ x_v & y_v & z_v \\ x_w & y_w & z_v \end{bmatrix}$

What happens when we apply R_{uvw} to any of the basis vectors, e.g.:

$$\mathbf{R}_{uvw}\mathbf{u} = egin{bmatrix} \mathbf{u} \cdot \mathbf{u} \ \mathbf{v} \cdot \mathbf{u} \ \mathbf{w} \cdot \mathbf{u} \end{bmatrix} = egin{bmatrix} 1 \ 0 \ 0 \end{bmatrix} = \mathbf{x}$$

 But this means that if we apply R_{uvw}^T to the Cartesian coordinate vectors, e.g.:

$$\mathbf{R}_{uvw}^{ ext{T}}\mathbf{y} = egin{bmatrix} x_u & x_v & x_w \ y_u & y_v & y_w \ z_u & z_v & z_w \end{bmatrix} egin{bmatrix} 0 \ 1 \ 0 \end{bmatrix} = egin{bmatrix} x_v \ y_v \ z_v \end{bmatrix} = \mathbf{v}$$

- This means that if we want to rotation around an arbitrary axis, we need only to use a change of coordinates
- E.g. to rotate around a direction w, we
 - Compute orthogonal directions $\boldsymbol{u},\,\boldsymbol{v},$ and \boldsymbol{w}
 - Change the **uvw** axes to be **xyz** (R_{uvw})
 - Apply a rotate-z()
 - Finally, change the axes back to **uvw** (R_{uvw}T)

$$\begin{bmatrix} x_u & x_v & x_w \\ y_u & y_v & y_w \\ z_u & z_v & z_w \end{bmatrix} \begin{bmatrix} \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_u & y_u & z_u \\ x_v & y_v & z_v \\ x_w & y_w & z_w \end{bmatrix}$$

Ruvw^T rotate-z() Ruvw

• These transformations also apply to transforming geometric objects

- These transformations also apply to transforming geometric objects
- Parametric forms:

- These transformations also apply to transforming geometric objects
- Parametric forms:
 - We can transform the points directly, e.g. M(p(t)) to transform the parametric positions p(t)

- These transformations also apply to transforming geometric objects
- Parametric forms:
 - We can transform the points directly, e.g. M(p(t)) to transform the parametric positions p(t)
- Implicit forms:

- These transformations also apply to transforming geometric objects
- Parametric forms:
 - We can transform the points directly, e.g. M(p(t)) to transform the parametric positions p(t)
- Implicit forms:
 - We invert the transform and test the predicate, e.g. if f(M⁻¹(**p**)) = 0 then **p** is on the transformed implicit shape