Computer
Graphics

[Lecture 6

mailto:josh@email.arizona.edu

Affine
Transformations

Translation

* Using the mathematics we’ve described so far, what about moving
objects in space.

* Problem (in 2D), we have:

/I
r = Mmi1x —+ M2y

/

Y

mo1X maay

e But we want:

-’B,

/

Y

mi1 — M2y +— Tt

mai1& — MYy + Yt

Homogeneous Coordinates

* To put this into one system of linear equations, we promote
(increase the dimensionality) by adding a component w = 1 for
vectors

. - _ -
L mi; Mi2 It L mi1x — M2y — Tt

/
Yy | = |M21 M22 Yt | Y| = | M2 T M2R2Y T Yt
1 | 0 0 1 | 1] i 1 1

* Implements a linear transformation followed by a translation (x,V1)
e These transformations are called affine transformations:

* Like linear transformations, they keep straight lines straight and
parallel lines parallel, but they do not preserve the origin

Homogeneous Coordinates

* \We promote all points (x,y) to (x,y,w=1), and similarly in 3D
we promote (X,y,z) to (X,y,z,w=1)

* These new coordinates are called homogeneous
coordinates

 Can be thought of as a clever bookkeeping scheme, but
also have a geometric interpretation, compare the following
matrix with a standard sheatr:

1 0 o T T+ T2

0 1 w Yl — | YT Yz
0 0 1 Z Z

Homogeneous Coordinates

e Composition works just as before, but using 3x3
multiplication instead of 2x2

e This approach is easier than keeping the linear transform
and the translate separately stored

Ms ug| [Mr ur| |p
0 1 0 1 1

Transforming Points vs.
Transforming Vectors

* Using homogeneous coordinates, we can differentiate between
points and vectors

e Recall:

e \ectors are just offsets (differences between points), and thus
should be not affected by translation

* Whereas points are represented by vectors offset from the origin

* Rule: vectors have w=0, whereas points have w=1:

M t _p_ _Mp—l—t_ _M t_ V— _MV-
o' 1] |1 1 o 1|10 0

Transforming Normals

 While differences between points transform OK, normals
do not necessarily behave the same

A

\/

L

Nn

Mt

Transforming Normals

e The problem is that the orthogonality constraint, that
normals always point orthogonal to the surface, is not
always preserved.

e One can solve for the correct transformation by observing
that tangent vectors, t, transform correctly and t - n = 0.

nit=0
nTt =nTIt = nTM Mt =0

* S0, we can transform normals using the inverse matrix

(M) n

Coordinate
Transformations

Coordinate Systems

* Points in space can be represented using an origin position and a set

of orthogonal basis vectors:

Coordinate Systems

* Points in space can be represented using an origin position and a set
of orthogonal basis vectors:

p = (a:p,yp) =0+z,x+ Yy

Coordinate Systems

* Points in space can be represented using an origin position and a set
of orthogonal basis vectors:

P = (wpayp) =0+z,x+ypy PpP= (upavp) =€ T Upu+ UpV

Coordinate Systems

* Points in space can be represented using an origin position and a set
of orthogonal basis vectors:

P = (wpayp) =0+z,x+ypy PpP= (upavp) =€ T Upu+ UpV

e Any point can be described in either coordinate system

Coordinate Systems

* Points in space can be represented using an origin position and a set
of orthogonal basis vectors:

P = (mpayp) =0+z,x+ypy PpP= (upavp) =€ T Upu+ UpV

e Any point can be described in either coordinate system
V
u 0.5u
/\—07\’
e
y p 1P
0.9y

O X O 2.5x

Matrices for Converting
Coordinate Systems

e Using homogenous coordinates and affine
transformations, we can convert between coordinate

systems:
T, 1
Y | = |0
1 0

o = O

Le

Ye
1

Ly

Yu
0

Ly

Yv
0

0
0

1

Ly
Yu

0

Ly

Yv
0

e More generally, any arbitrary coordinate system
transform:

P’U/U

xU’U

0

Y uv
0

Ouv
1

pwy

Le

Ye
1

Affine Change of
Coordinates

* |t turns out this works even if u, v are not orthogonal.

* |t also provides another way to interpret and construct
transformation matrices

\
u _ _
Frame matrix 1 05 0
(converts x,y to u,v) | & O 1 O
]) 0 0 1
u v p]
I 0O 0 1]

Required Reading

e FOCG, Ch.7

