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Affine
Transformations



Translation

* Using the mathematics we’ve described so far, what about moving
objects in space.

* Problem (in 2D), we have:
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Homogeneous Coordinates

* To put this into one system of linear equations, we promote
(increase the dimensionality) by adding a component w = 1 for
vectors
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* Implements a linear transformation followed by a translation (x,V1)
e These transformations are called affine transformations:

* Like linear transformations, they keep straight lines straight and
parallel lines parallel, but they do not preserve the origin



Homogeneous Coordinates

* \We promote all points (x,y) to (x,y,w=1), and similarly in 3D
we promote (X,y,z) to (X,y,z,w=1)

* These new coordinates are called homogeneous
coordinates

 Can be thought of as a clever bookkeeping scheme, but
also have a geometric interpretation, compare the following
matrix with a standard sheatr:
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Homogeneous Coordinates

e Composition works just as before, but using 3x3
multiplication instead of 2x2

e This approach is easier than keeping the linear transform
and the translate separately stored
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Transforming Points vs.
Transforming Vectors

* Using homogeneous coordinates, we can differentiate between
points and vectors

e Recall:

e \ectors are just offsets (differences between points), and thus
should be not affected by translation

* Whereas points are represented by vectors offset from the origin

* Rule: vectors have w=0, whereas points have w=1:
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Transforming Normals

 While differences between points transform OK, normals
do not necessarily behave the same
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Transforming Normals

e The problem is that the orthogonality constraint, that
normals always point orthogonal to the surface, is not
always preserved.

e One can solve for the correct transformation by observing
that tangent vectors, t, transform correctly and t - n = 0.
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* S0, we can transform normals using the inverse matrix
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Coordinate
Transformations



Coordinate Systems

* Points in space can be represented using an origin position and a set

of orthogonal basis vectors:



Coordinate Systems

* Points in space can be represented using an origin position and a set
of orthogonal basis vectors:

p = (a:p,yp) =0+z,x+ Yy



Coordinate Systems

* Points in space can be represented using an origin position and a set
of orthogonal basis vectors:
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Coordinate Systems

* Points in space can be represented using an origin position and a set
of orthogonal basis vectors:

P = (wpayp) =0+z,x+ypy PpP= (upavp) =€ T Upu+ UpV

e Any point can be described in either coordinate system



Coordinate Systems

* Points in space can be represented using an origin position and a set
of orthogonal basis vectors:

P = (mpayp) =0+z,x+ypy PpP= (upavp) =€ T Upu+ UpV

e Any point can be described in either coordinate system
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Matrices for Converting
Coordinate Systems

e Using homogenous coordinates and affine
transformations, we can convert between coordinate

systems:
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e More generally, any arbitrary coordinate system
transform:
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Affine Change of
Coordinates

* |t turns out this works even if u, v are not orthogonal.

* |t also provides another way to interpret and construct
transformation matrices
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Required Reading

e FOCG, Ch.7





