Computer
Graphics

Lecture #7
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Viewing



Recall: Homogeneous
Coordinates

e To put this into one system of linear equations, we increase the
dimensionality, adding a component w = 1 for vectors
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e Implements a linear transformation followed by a translation (x,V1)

e These transformations are called affine transformations:

e Like linear transformations, they keep straight lines straight
and parallel lines parallel, but they do not preserve the origin



Recall: Coordinate Systems

* Points in space can be represented using an origin position and a set
of orthogonal basis vectors:
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Recall: Matrices for Converting

e Using homogenous coordinates and affine
transformations, we can convert between coordinate

systems:
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e More generally, any arbitrary coordinate system
transform:
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Viewing



Recall: Two Ways to Think
About How We Make Images

e Drawing e Photography




Recall: Two Ways to Think
About Rendering

e Object-Ordered e Image-Ordered

e Decide, for every object in e Decide, for every pixel in
the scene, Its contribution the image, its contribution
to the image from every object



Recall: Two Ways to Think
About Rendering

e Object-Ordered e Image-Ordered
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tMe S&€ne; orttridbution the image, its contribution

to the image from every object




View Transformations



Using Transformations for
Rendering

e |dea for today: Matrices can be used to move objects
from 3D spaces to the 2D space of an image

* Broadly, this reduction of dimensions is called viewing
transformation

e We will compose multiple matrix-based transformations
to rethink cameras



Drawing by Transformation

e For now, we will consider drawing wireframe objects
(collections of 3D line segments)

[

>

S

AN

Orthographic

Perspective +

Perspective Hidden Line Removal




Step-by-Step Viewing Transformations

(Each arrow is a matrix)
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Step-by-Step Viewing Transformations

_ (Each arrow is a matrix)
We’ll Discuss Later
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Viewport Transformation

S A:
. s T -«
e Goal: Transform from a canonical | <—
. . (o D
2D space to pixel coordinates S | =——
g <
e Canonical space:
(XcanonicaI,YCanonical) S ['1 ,1]><['1 ,1] Viewport
transformation
* Pixel space: A
(Xscreen,YScreen) S
[0.5,nx-0.5]%[0.5,ny-0.5]
>

e Initially, we will think of this as
transformation of a 2D to 2D space

Canonical
view volume



Viewports as Windowing

A windowing operation
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Viewports as Windowing

CT0)

e Decompose windowing into
three steps
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Viewports as Windowing
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Viewports as Windowing

A A
y y
(xh, yh)

e Decompose windowing into
three steps

Translate CAYRD)
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Viewports as Windowing
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e Decompose windowing into
three steps
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Viewports as Windowing
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Sidebar: Combining a 3x3 Linear
Matrix Followed by a Translation

* Translation after the linear transformation can always be
read off separately.

o Often useful for debugging.
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Using Windowing to Define the
Viewport Transformation

* Plugging in with our known constants:
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* Right now, we do not need z-values, but eventually we
will need to carry them through with no changes:




Using Windowing to Define the
Viewport Transformation

* Plugging in with our known constants:
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Using Windowing to Define the
Viewport Transformation

* Plugging in with our known constants:
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Canonical View Volume

* |n actuality, our viewport S E
. . " Q| —m—
transfo_rma’u?n will work with the ol —
canonical view volume ol D E—
% —%
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Orthographic Projection

Goal: Convert objects from 3D
representation to canonical view
volume

We will start by modeling this 3D
space as an axis-aligned boxe

e View volume: [I,r]x][b,t]X[ f,n]

e Canonical view volume:
[-1,1]x[-1,1]x[-1,1]

Reshapes the view volume as defined
by the camera

Camera space

/

\

Projection
transformation

Canonical
view volume



Orthographic Projection

- x = | = left plane,
e Orthographic view volume _
defined by s ars: x = r = right plane,
efined by six scalars: y = b = bottom plane,
, =t = 1
e Convention: n > f, but note that y =t = top plane,
, z = n = near plane,
both are negative .
= z = f = far plane.
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Orthographic Projection

e Just a 3D windowing transformation!
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Camera Transformations

Camera space

e (Goal: Transform 3D space to
arbitrary camera parameters

/
\

, Cafmera
e Camera modeled with three trandformation
vectors:
e ¢, the eye position e — 6&
e g the gaze direction A
e t, the view up direction
y

World space



Camera Coordinates

e We will convert to a camera coordinate system with
origin, e, and orthogonal basis vectors u, v, and w

y g
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Camera Coordinates




Changing Coordinates

e We need to both translate the origin and change
coordinate systems
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Viewing Algorithm

construct M vp

construct M orth
construct M cam

M=Mvp *M orth * M cam
for each 3D object 0O {

O screen = M * O
draw(O screen) For example, if O is a triangle, with

) vertices a, b, and ¢, transform all 3
vertices Ma, Mb, and Mc



Projective
Transformations



Relative Size Based on Distance

 Key idea of perspective: the size of an _ i
object on the screen is proportional to 1/z yS oz y

View plane




Problem: How to divide by z?

e |inear transformations: 33, — ax _|_ by _|_ CZ
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Problem: How to divide by z?

e |inear transformations: CE, — ax _|_ by _|_ CZ

e Affine transformations: ZE, — ar _I_ by _I_ C2 _|_ d

e Qur trick: using w in ZB, _ a1 z+b1y+ciz2+d;
homogeneous coordinates as ex+ fy+gz+h
a denominator: y, a2 by y+cyz+ds

e Same denominator for all ex+fy+gz+h
coordinates. Z, ~ agz+b3ytcsztds

ex+ fy+gz+h



Projective Transformations,
or Homographies

ap b1 c1 dy

N as b3 C3 d3
e f g h

* Where we reinterpret coordinates by diving by w:
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Equivalence of Points

o Key idea: all scalar multiples of a vector are the same!

 Equivalently: we’re treating points as lines in one

dimension higher

X ~ X

foralla # 0

We will only divide by
w when we want the
Cartesian coordinates

(=2, -1, 2)




Perspective
Projection



e \We can now replace:

Using Homographies for
Perspective

ys = 2y




Perspective Matrix

e Our matrix:

‘n 0 0 0
p_ 0 n 0 0

0 0 n+f —fn

0 0 1 0 _

e Keeps near plane
fixed, maps far plane
to back of the box




Perspective Distortion

e Effect on view rays/ lines:
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e Note that affine transformation cannot do this because it
keeps parallel lines parallel
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Perspective Distortion

e Perspective matrix effect on coordinates is nonlinear
distortion in z:

P

N 8
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Perspective Distortion

e Perspective matrix effect on coordinates is nonlinear
distortion in z:
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Perspective Distortion

e Perspective matrix effect on coordinates is nonlinear
distortion in z:

o nz
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Perspective Distortion

e Perspective matrix effect on coordinates is nonlinear

distortion in z:

ne
ny

(n+ f)z— fn
2

N 8

Y

e But it does, however, preserve order in the z-coordinate

(which will become useful very soon)



Perspective Projection
Matrix

e Concatenating the perspective matrix with the
orthographic projection provides the perspective
projection matrix:

r—I [—r
0 2 Xt g
Mper — MorthP Mper — t=b b=t 0
o o It 2m
n—f f—n
0 0 1 0

e We can define /, r, b, and ¢ relative to the near plane, since
we keep it fixed



Putting it all together

Equivalently:
M = My, Mrtn PMcam

construct M vp

construct M per
construct M cam

M=Mvp *M per * M cam
for each 3D object 0O {

O_screen = M * O For a given vertex a = (x,y,z),

draw(0_screen) p = Ma should result in

draWing (Xp/LUp,yp/LUp,Zp/LUp)
on the screen



Lec20 Required Reading

e FOCG, Ch. 8



Reminder:
Assignment 05

Assigned: Wednesday, Oct. 30
Written Due: Monday, Nov. 11, 4:59:59 pm
Program Due: Wednesday, Nov. 13, 4:59:59 pm





