Computer
Graphics

Lecture #7

mailto:josh@email.arizona.edu

Viewing

Recall: Homogeneous
Coordinates

e To put this into one system of linear equations, we increase the
dimensionality, adding a component w = 1 for vectors

.’.B,

/

y p—
1

mii
mai

0

mi2
mao

0

Lt

Yt
1

L

-y-
1

M1 L -

- TM12Y -

mo1 L -

- M22Y -
1

- Yt

e Implements a linear transformation followed by a translation (x,V1)

e These transformations are called affine transformations:

e Like linear transformations, they keep straight lines straight
and parallel lines parallel, but they do not preserve the origin

Recall: Coordinate Systems

* Points in space can be represented using an origin position and a set
of orthogonal basis vectors:

Recall: Coordinate Systems

* Points in space can be represented using an origin position and a set
of orthogonal basis vectors:

p = (a:p,yp) =0+z,x+ Yy

Recall: Coordinate Systems

* Points in space can be represented using an origin position and a set
of orthogonal basis vectors:

P = (wpayp) =0+z,x+ypy PpP= (upavp) =€ T Upu+ UpV

Recall: Coordinate Systems

* Points in space can be represented using an origin position and a set
of orthogonal basis vectors:

P = (wpayp) =0+z,x+ypy PpP= (upavp) =€ T Upu+ UpV

e Any point can be described in either coordinate system

Recall: Coordinate Systems

* Points in space can be represented using an origin position and a set
of orthogonal basis vectors:

P = (mpayp) =0+z,x+ypy PpP= (upavp) =€ T Upu+ UpV

e Any point can be described in either coordinate system
V
u 0.5u
/\—07\’
e
y °p 1P
0.9y

o X O 2.5x

Recall: Matrices for Converting

e Using homogenous coordinates and affine
transformations, we can convert between coordinate

systems:
T, 1
Y | = |0
1 0

o = O

Le

Ye
1

Ly

Yu
0

Ly

Yv
0

0
0

1

Ly

Yu
0

Coordinate Systems

Ly

Yv
0

e More generally, any arbitrary coordinate system
transform:

P’U/U

xU’U

0

Y uv
0

Ouv
1

pwy

Le

Ye
1

Viewing

Recall: Two Ways to Think
About How We Make Images

e Drawing e Photography

Recall: Two Ways to Think
About Rendering

e Object-Ordered e Image-Ordered

e Decide, for every object in e Decide, for every pixel in
the scene, Its contribution the image, its contribution
to the image from every object

Recall: Two Ways to Think
About Rendering

e Object-Ordered e Image-Ordered

o THMG{ in | ¢ Decide, for every pixel in
tMe S&€ne; orttridbution the image, its contribution

to the image from every object

View Transformations

Using Transformations for
Rendering

e |dea for today: Matrices can be used to move objects
from 3D spaces to the 2D space of an image

* Broadly, this reduction of dimensions is called viewing
transformation

e We will compose multiple matrix-based transformations
to rethink cameras

Drawing by Transformation

e For now, we will consider drawing wireframe objects
(collections of 3D line segments)

[

>

S

AN

Orthographic

Perspective +

Perspective Hidden Line Removal

Step-by-Step Viewing Transformations

(Each arrow is a matrix)

, A
Object space Camera space >
Y | -
A <4<
| —
> - B
QL -
il
S n L=
Modeling Caimera Projection Viewport
transformation transformation transformation transformation
P é> A
A
-
> Canonical
World space anonica

view volume

Step-by-Step Viewing Transformations

_ (Each arrow is a matrix)
We’ll Discuss Later

A
ect space Camera space >
Y |
<4<
| ———
/ :
> S| «——
85 =
A €
Cafmera Projection Viewport
transformation transformation transformation
v 6} A
A
>
> Canonical
World space anonica

view volume

Viewport Transformation

S A:
. s T -«
e Goal: Transform from a canonical | <—
. . (o D
2D space to pixel coordinates S | =——
g <
e Canonical space:
(XcanonicaI,YCanonical) S ['1 ,1]><['1 ,1] Viewport
transformation
* Pixel space: A
(Xscreen,YScreen) S
[0.5,nx-0.5]%[0.5,ny-0.5]
>

e Initially, we will think of this as
transformation of a 2D to 2D space

Canonical
view volume

Viewports as Windowing

A windowing operation

A
y
(xh, yh)
(xz,)’1)
Translate
>
X
A
y

Scale

R YY)

Translate

X

>

transforms a rectangle
[x1,xn]%[y1,yn] tOo another

rectangle [x’1,x’n]x[y’1,y’n]

(X, = x5 ¥y = 7))

X7y 1)

Viewports as Windowing

CT0)

e Decompose windowing into
three steps

TN

/ /
'r—x'; YRV
Th—2;) Yp—Y;

translate(z';, ¥';) scale() translate(—x;, —y;)

Viewports as Windowing

CT0)

e Decompose windowing into
three steps

TN

/ /
'r—x'; YRV
Th—2;) Yp—Y;

translate(z';, ¥';) scale() translate(—x;, —y;)

1 0 il?'l
0 1 ¥
0 0 1

Viewports as Windowing

A A
y y
(xh, yh)

e Decompose windowing into
three steps

Translate CAYRD)

/ /
'r—x'; YRV
Th—2;) Yp—Y;

translate(z';, ¥';) scale() translate(—x;, —y;)

a:'h—:v’l
fL',l Lp—I] O O
y,l O y,h_y,l O
Y=Y
0 0 1

o O -
o =O

Viewports as Windowing

A A
y y
(xh, yh)

e Decompose windowing into
three steps

Translate CAYRD)

/ /
'r—x'; YRV
Th—2;) Yp—Y;

translate(z';, ¥';) scale() translate(—x;, —y;)

R

]. O fL’l Tp—T]]_ O —wl
0 1 ¢, 0 Ya¥i o |0 1 —u
00 1 I 00 1

0 0 1

Viewports as Windowing

, m,h_w’l O O
]. O L] rp—T]]_ O —a}’l
0 1 ¢, 0 Yot of |0 1 —u
Yn—Y
0 0 1 0 "O’ . 0 0 1
 Multiplying together:
' —z' 0 1 xp—x' R
Tp—T] Lh—L]
0 y'h—?/l y,lyh_y,hyl
Y=Y Yn—Yi

0 0 1

Sidebar: Combining a 3x3 Linear
Matrix Followed by a Translation

* Translation after the linear transformation can always be
read off separately.

o Often useful for debugging.

1 00 =z ||au a2 a3 O aipr a2 a3 Ty
0 1 0 ye||aa a2 a O _ |az a2 a; y
0 0 1 2z as31 a3 a3z 0 az; az2 a3z <t
000 1]Lo o o 1] Lo o o 1

Zr h—:z:’l

Lh—I]

0
0

Using Windowing to Define the
Viewport Transformation

* Plugging in with our known constants:

0

yh—yz
Yn—Y

0

a:’la:h—x'hml

Th—I]
y,lyh _y,hyl
Yn—Y
1

wscreen

yscreen

1

2
0
0

0

n,—1 7]

2
Ny ny,—1
2 2
0 1

L canonical

Ycanonical

1

Zr h—:z:’l

Lh—I]

0
0

Using Windowing to Define the
Viewport Transformation

* Plugging in with our known constants:

0

yh—yz
Yn—Y

0

a:’la:h—x'hml

Th—I]
y,lyh _y,hyl
Yn—Y
1

wscreen

yscreen

1

Ny

2

0
0

Uz
0 2
Ny ny,—1
2 2
0 1

—1 7

L canonical

Ycanonical

1

* Right now, we do not need z-values, but eventually we
will need to carry them through with no changes:

Using Windowing to Define the
Viewport Transformation

* Plugging in with our known constants:

Zr h—:z:’l

0

Lh—I]

0
0

yh—yz
Yn—Y

0

a:’la:h—x'hml

Th—I]
y,lyh _y,hyl
Yn—Y
1

wscreen

yscreen

1

Ny n,—1 7]
2 0 2

n n,—1
0 23/ y2
0 O 1

L canonical

Ycanonical

1

* Right now, we do not need z-values, but eventually we
will need to carry them through with no changes:

M,,

e
0 5
0 0
0 0

o= O O

n,—1
2
n,—1

2
0
1

Using Windowing to Define the
Viewport Transformation

* Plugging in with our known constants:

Zr h—:z:’l

0

Lh—I]

0
0

yh—yz
Yn—Y

0

a:’la:h—x'hml

Th—I]
y,lyh _y,hyl
Yn—Y
1

wscreen

yscreen

1

Ny n,—1 7]
2 0 2

n n,—1
0 23/ y2
0 O 1

L canonical

Ycanonical

1

* Right now, we do not need z-values, but eventually we
will need to carry them through with no changes:

M,,

e
0 5
0 0
0 0

o= O O

n,—1
2
n,—1

2
0
1

Canonical View Volume

* |n actuality, our viewport S E
. . " Q| —m—
transfo_rma’u?n will work with the ol —
canonical view volume ol D E—
% —%
z Viewport
— transformation
Q (1,1,1)
A
\
/’
=B|Y
|
>
(_1)_‘1_):1) £ X
\7 \ Canonical
view volume

Orthographic Projection

Goal: Convert objects from 3D
representation to canonical view
volume

We will start by modeling this 3D
space as an axis-aligned boxe

e View volume: [I,r]x][b,t]X[f,n]

e Canonical view volume:
[-1,1]x[-1,1]x[-1,1]

Reshapes the view volume as defined
by the camera

Camera space

/

\

Projection
transformation

Canonical
view volume

Orthographic Projection

- x = | = left plane,
e Orthographic view volume _
defined by s ars: x = r = right plane,
efined by six scalars: y = b = bottom plane,
, =t = 1
e Convention: n > f, but note that y =t = top plane,
, z = n = near plane,
both are negative .
= z = f = far plane.

7

v C\ (r,1.f)
(

D) N A,

—_—a

Orthographic Projection

e Just a 3D windowing transformation!

B w'h—w'l

Lp—I]

0
0

0

yh_yl

Y=Y

w’lwh—w’hwl i

Lp—I]

/ /
YiYn—Y nl
Y=Y

/ /
Z|Rh—R K<
Zh —Zl

1

Morth —

== o?|w

- o

T
S

Camera Transformations

Camera space

e (Goal: Transform 3D space to
arbitrary camera parameters

/
\

, Cafmera
e Camera modeled with three trandformation
vectors:
e ¢, the eye position e — 6&
e g the gaze direction A
e t, the view up direction
y

World space

Camera Coordinates

e We will convert to a camera coordinate system with
origin, e, and orthogonal basis vectors u, v, and w

y g
t W =— — ——
||| ’
N . tXxXw
: U == Texw| ’
‘ g V =W XU

Camera Coordinates

Changing Coordinates

e We need to both translate the origin and change
coordinate systems

Ly Yu <u

0][1 0 0 —=x.

M :-uvwe—_lz Ty, Yy 2o 0[]0 1 0 —w.
100 0 1) Tw Yu 2w 0|0 0 1 —z
0 0 o0 1]looo 1

Viewing Algorithm

construct M vp

construct M orth
construct M cam

M=Mvp *M orth * M cam
for each 3D object 0O {

O screen = M * O
draw(O screen) For example, if O is a triangle, with

) vertices a, b, and ¢, transform all 3
vertices Ma, Mb, and Mc

Projective
Transformations

Relative Size Based on Distance

 Key idea of perspective: the size of an _ i
object on the screen is proportional to 1/z yS oz y

View plane

Problem: How to divide by z?

e |inear transformations: 33, — ax _|_ by _|_ CZ

Problem: How to divide by z?

e |inear transformations: ZE, — ax _|_ by _|_ CZ

» Affine transformations: QE, — axr + by + cz + d

Problem: How to divide by z?

e |inear transformations: ZE, — ax _|_ by _|_ CZ

e Affine transformations: ZE, — ar _I_ by _I_ C2 _|_ d

e Qur trick: using w in iE, _ a1 z+b1y+ciz2+d;
homogeneous coordinates as ex+ fy+gz+h

a denominator:

Problem: How to divide by z?

e |inear transformations: CE, — ax _|_ by _|_ CZ

e Affine transformations: ZE, — ar _I_ by _I_ C2 _|_ d

e Qur trick: using w in ZB, _ a1 z+b1y+ciz2+d;
homogeneous coordinates as ex+ fy+gz+h
a denominator: y, a2 by y+cyz+ds

e Same denominator for all ex+fy+gz+h
coordinates. Z, ~ agz+b3ytcsztds

ex+ fy+gz+h

Projective Transformations,
or Homographies

ap b1 c1 dy

N as b3 C3 d3
e f g h

* Where we reinterpret coordinates by diving by w:

(',¢,7) = (&/®, 5/, /D)

S W & &

T
laz by ¢ do| |y
2
1

Equivalence of Points

o Key idea: all scalar multiples of a vector are the same!

 Equivalently: we’re treating points as lines in one

dimension higher

X ~ X

foralla # 0

We will only divide by
w when we want the
Cartesian coordinates

(=2, -1, 2)

Perspective
Projection

e \We can now replace:

Using Homographies for
Perspective

ys = 2y

Perspective Matrix

e Our matrix:

‘n 0 0 0
p_ 0 n 0 0

0 0 n+f —fn

0 0 1 0 _

e Keeps near plane
fixed, maps far plane
to back of the box

Perspective Distortion

e Effect on view rays/ lines:

/\

‘—

_' \\0

e Note that affine transformation cannot do this because it
keeps parallel lines parallel

|

1|

\\\\\

|1

—
—
—

|
1 \ll
| 1LY
/\

Perspective Distortion

e Perspective matrix effect on coordinates is nonlinear
distortion in z:

P

N 8

I 1
O O O 3

Perspective Distortion

e Perspective matrix effect on coordinates is nonlinear
distortion in z:

O O3 O
S

=4+ © O
%

Okl.,OO
S

N 8

I 1
O O O 3

Perspective Distortion

e Perspective matrix effect on coordinates is nonlinear
distortion in z:

o nz

0 0 01|z n ny

n 0 0 Y| ny .

0 n+f —fnl|l | B ™~

0 1 0 J|4 (n+flz n n+f
- - 1

Perspective Distortion

e Perspective matrix effect on coordinates is nonlinear

distortion in z:

ne
ny

(n+ f)z— fn
2

N 8

Y

e But it does, however, preserve order in the z-coordinate

(which will become useful very soon)

Perspective Projection
Matrix

e Concatenating the perspective matrix with the
orthographic projection provides the perspective
projection matrix:

r—I [—r
0 2 Xt g
Mper — MorthP Mper — t=b b=t 0
o o It 2m
n—f f—n
0 0 1 0

e We can define /, r, b, and ¢ relative to the near plane, since
we keep it fixed

Putting it all together

Equivalently:
M = My, Mrtn PMcam

construct M vp

construct M per
construct M cam

M=Mvp *M per * M cam
for each 3D object 0O {

O_screen = M * O For a given vertex a = (x,y,z),

draw(0_screen) p = Ma should result in

draWing (Xp/LUp,yp/LUp,Zp/LUp)
on the screen

Lec20 Required Reading

e FOCG, Ch. 8

Reminder:
Assignment 05

Assigned: Wednesday, Oct. 30
Written Due: Monday, Nov. 11, 4:59:59 pm
Program Due: Wednesday, Nov. 13, 4:59:59 pm

