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Viewing 



Recall: Homogeneous 
Coordinates

• To put this into one system of linear equations, we increase the
dimensionality, adding a component w = 1 for vectors

• Implements a linear transformation followed by a translation (xt,yt)

• These transformations are called affine transformations:

• Like linear transformations, they keep straight lines straight
and parallel lines parallel, but they do not preserve the origin



Recall: Coordinate Systems
• Points in space can be represented using an origin position and a set

of orthogonal basis vectors:
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Recall: Matrices for Converting 
Coordinate Systems

• Using homogenous coordinates and affine 
transformations, we can convert between coordinate 
systems:


• More generally, any arbitrary coordinate system 
transform:


•



Viewing



Recall: Two Ways to Think 
About How We Make Images
• Drawing  • Photography
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About Rendering

• Object-Ordered

• Decide, for every object in
the scene, its contribution
to the image 

• Image-Ordered

• Decide, for every pixel in
the image, its contribution
from every object



Recall: Two Ways to Think 
About Rendering

• Object-Ordered

• Decide, for every object in
the scene, its contribution
to the image 

• Image-Ordered

• Decide, for every pixel in
the image, its contribution
from every object

TODAY



View Transformations



Using Transformations for 
Rendering

• Idea for today: Matrices can be used to move objects
from 3D spaces to the 2D space of an image

• Broadly, this reduction of dimensions is called viewing
transformation

• We will compose multiple matrix-based transformations
to rethink cameras



Drawing by Transformation

• For now, we will consider drawing wireframe objects
(collections of 3D line segments)

Orthographic Perspective Perspective + 
Hidden Line Removal



Step-by-Step Viewing Transformations 
(Each arrow is a matrix)



Step-by-Step Viewing Transformations 
(Each arrow is a matrix)

We’ll Discuss Later



Viewport Transformation
• Goal: Transform from a canonical

2D space to pixel coordinates

• Canonical space: 
(xcanonical,ycanonical) ∈ [-1,1]×[-1,1]

• Pixel space: 
(xscreen,yscreen) ∈
[0.5,nx-0.5]×[0.5,ny-0.5]

• Initially, we will think of this as
transformation of a 2D to 2D space



Viewports as Windowing A windowing operation 
transforms a rectangle 
[𝑥l,𝑥h]×[𝑦l,𝑦h] to another 

rectangle [𝑥’l,𝑥’h]×[𝑦’l,𝑦’h]



Viewports as Windowing

• Decompose windowing into
three steps
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• Decompose windowing into 
three steps



Viewports as Windowing

• Multiplying together:



Sidebar: Combining a 3x3 Linear 
Matrix Followed by a Translation
• Translation after the linear transformation can always be

read off separately.

• Often useful for debugging.



Using Windowing to Define the 
Viewport Transformation

• Plugging in with our known constants:
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Using Windowing to Define the 
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• Plugging in with our known constants:

• Right now, we do not need z-values, but eventually we 
will need to carry them through with no changes:



Canonical View Volume
• In actuality, our viewport

transformation will work with the
canonical view volume



Orthographic Projection
• Goal: Convert objects from 3D

representation to canonical view
volume

• We will start by modeling this 3D
space as an axis-aligned boxe

• View volume: [𝑙,𝑟]×[𝑏,𝑡]×[𝑓,𝑛]

• Canonical view volume: 
[-1,1]×[-1,1]×[-1,1]

• Reshapes the view volume as defined
by the camera



Orthographic Projection
• Orthographic view volume

defined by six scalars:

• Convention: 𝑛 > 𝑓, but note that
both are negative



Orthographic Projection
• Just a 3D windowing transformation!



Camera Transformations

• Goal: Transform 3D space to
arbitrary camera parameters

• Camera modeled with three
vectors:
• 𝐞, the eye position
• 𝐠, the gaze direction
• 𝐭, the view up direction



Camera Coordinates
• We will convert to a camera coordinate system with 

origin, 𝐞, and orthogonal basis vectors 𝐮, 𝐯, and 𝐰



Camera Coordinates



Changing Coordinates
• We need to both translate the origin and change 

coordinate systems



Viewing Algorithm

construct M_vp
construct M_orth
construct M_cam
M = M_vp * M_orth * M_cam
for each 3D object O {
  O_screen = M * O
  draw(O_screen)
}

For example, if O is a triangle, with 
vertices 𝐚, 𝐛, and 𝐜, transform all 3 
vertices 𝐌𝐚, 𝐌𝐛, and 𝐌𝐜



Projective 
Transformations



Relative Size Based on Distance
• Key idea of perspective: the size of an 

object on the screen is proportional to 1/z 



Problem: How to divide by z?
• Linear transformations:
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Problem: How to divide by z?
• Linear transformations:

• Affine transformations:

• Our trick: using w in 
homogeneous coordinates as 
a denominator:

• Same denominator for all 
coordinates.



Projective Transformations, 
or Homographies

• Where we reinterpret coordinates by diving by w:



Equivalence of Points
• Key idea: all scalar multiples of a vector are the same!


• Equivalently: we’re treating points as lines in one 
dimension higher

We will only divide by 
w when we want the 
Cartesian coordinates



Perspective 
Projection



Using Homographies for 
Perspective

• We can now replace:


• With:



Perspective Matrix
• Our matrix:


• Keeps near plane 
fixed, maps far plane 
to back of the box



• Effect on view rays / lines:


• Note that affine transformation cannot do this because it 
keeps parallel lines parallel

Perspective Distortion



Perspective Distortion
• Perspective matrix effect on coordinates is nonlinear 

distortion in z:
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Perspective Distortion
• Perspective matrix effect on coordinates is nonlinear 

distortion in z:

• But it does, however, preserve order in the z-coordinate 
(which will become useful very soon)



Perspective Projection 
Matrix

• Concatenating the perspective matrix with the 
orthographic projection provides the perspective 
projection matrix:


• We can define 𝑙, 𝑟, 𝑏, and 𝑡 relative to the near plane, since 
we keep it fixed



Putting it all together

construct M_vp
construct M_per
construct M_cam
M = M_vp * M_per * M_cam
for each 3D object O {
  O_screen = M * O
  draw(O_screen)
}

Equivalently:

For a given vertex 𝐚 = (𝑥,𝑦,𝑧), 
p = 𝐌𝐚 should result in 
drawing (𝑥p/𝑤p,𝑦p/𝑤p,𝑧p/𝑤p) 
on the screen



Lec20 Required Reading

• FOCG, Ch. 8



Reminder: 
Assignment 05

Assigned: Wednesday, Oct. 30

Written Due: Monday, Nov. 11, 4:59:59 pm


Program Due: Wednesday, Nov. 13, 4:59:59 pm




