
 Computer
Graphics

Lecture #8

mailto:josh@email.arizona.edu

Projective
Transformations

Relative Size Based on Distance
• Key idea of perspective: the size of an

object on the screen is proportional to 1/z

Problem: How to divide by z?
• Linear transformations:

Problem: How to divide by z?
• Linear transformations:

• Affine transformations:

Problem: How to divide by z?
• Linear transformations:

• Affine transformations:

• Our trick: using w in
homogeneous coordinates as
a denominator:

Problem: How to divide by z?
• Linear transformations:

• Affine transformations:

• Our trick: using w in
homogeneous coordinates as
a denominator:

• Same denominator for all
coordinates.

Projective Transformations,
or Homographies

• Where we reinterpret coordinates by diving by w:

Equivalence of Points
• Key idea: all scalar multiples of a vector are the same!

• Equivalently: we’re treating points as lines in one
dimension higher

We will only divide by
w when we want the
Cartesian coordinates

Perspective
Projection

Using Homographies for
Perspective

• We can now replace:

• With:

Perspective Matrix
• Our matrix:

• Keeps near plane
fixed, maps far plane
to back of the box

• Effect on view rays / lines:

• Note that affine transformation cannot do this because it
keeps parallel lines parallel

Perspective Distortion

Perspective Distortion
• Perspective matrix effect on coordinates is nonlinear

distortion in z:

Perspective Distortion
• Perspective matrix effect on coordinates is nonlinear

distortion in z:

Perspective Distortion
• Perspective matrix effect on coordinates is nonlinear

distortion in z:

Perspective Distortion
• Perspective matrix effect on coordinates is nonlinear

distortion in z:

• But it does, however, preserve order in the z-coordinate
(which will become useful very soon)

Perspective Projection
Matrix

• Concatenating the perspective matrix with the
orthographic projection provides the perspective
projection matrix:

• We can define 𝑙, 𝑟, 𝑏, and 𝑡 relative to the near plane, since
we keep it fixed

Putting it all together

construct M_vp
construct M_per
construct M_cam
M = M_vp * M_per * M_cam
for each 3D object O {
 O_screen = M * O
 draw(O_screen)
}

Equivalently:

For a given vertex 𝐚 = (𝑥,𝑦,𝑧),
p = 𝐌𝐚 should result in
drawing (𝑥p/𝑤p,𝑦p/𝑤p,𝑧p/𝑤p)
on the screen

Lec20 Required Reading

• FOCG, Ch. 8

