

Properties of Actinides

- 1. Electronic configuration
- 2. Oxidation state
- 3. Ionic size
- 4. Actinide contraction
- 5. Magnetic properties
- 6. Color
- 7. Complex formation
- 8. Chemical reactivity of Actinides

Element	Symbol	A.N	Electronic configuration	An ³⁺	Other Oxidation states
Actinium	Ac	89	[Rn] 6d ¹ 7s ²	[Rn]4f ⁰	
Thorium	Th	90	[Rn]5f ¹ 6d ¹ 7s ²	[Rn]4f ¹	IV
Protactinium	Pa	91	[Rn]5f ² 6d ¹ 7s ²	[Rn]4f ²	IV, V
Uranium	U	92	[Rn]5f ³ 6d ¹ 7s ²	[Rn]4f ³	IV, V, VI
Neptunium	Np	93	[Rn]5f ⁴ 6d ¹ 7s ²	[Rn]4f ⁴	IV, V, VI, VII
Plutonium	Pu	94	[Rn]5f ⁶ 7s ²	[Rn]4f ⁵	IV, V, VI, VII
Americium	Am	95	[Rn]5f ⁷ 7s ²	[Rn]4f ⁶	IV,VI
Curium	Cm	96	[Rn]5f ⁷ 6d ¹ 7s ²	[Rn]4f ⁷	IV
Berkelium	Bk	97	[Rn]5f ⁹ 7s ²	[Rn]4f ⁸	IV
Californium	Cf	98	[Rn]5f ¹⁰ 7s ²	[Rn]4f ⁹	IV
Einsteinium	Es	99	[Rn]5f ¹¹ 7s ²	[Rn]4f ¹⁰	Ш
Fermium	Fm	100	[Rn]5f ¹² 7s ²	[Rn]4f ¹¹	П
Mendelevium	Md	101	[Rn]5f ¹³ 7s ²	[Rn]4f ¹²	П
Nobelium	No	102	[Rn]5f ¹⁴ 7s ²	[Rn]4f ¹³	П
Lawrencium	Lr	103	[Rn]5f ¹⁴ 6d ¹ 7s ²	[Rn]4f ¹⁴	

 The color depends upon the number of 5f electrons, ions with 5f⁰ electrons and 5f¹⁴ electrons are colorless. <u>The color is due to f-f electronic transitions</u>. Most of the tri positive and tetra positive (3+ and 4+) ions are colored. 						+ and	Example: Ac ³⁺ -colorless , Np ³⁺ - Purple, Am ³⁺ - pink, Cm ³⁺ - colorless, U ⁴⁺ - Green, Np ⁴⁺ - Yellow-green.				
	Appro	oximat	e colo	rs of a	ctinide i	ons in a	queous s	olution [[]	82]		
					00	04	05	06	07	08	aa
Oxidation state	89	90	91	92	93	94	90	90	31	30	55
Dxidation state +3	89 Ac³⁺	90 Th ³⁺	91 Pa ³⁺	92 U ³⁺	93 Np ³⁺	94 Pu ³⁺	Am ³⁺	Cm ³⁺	Bk ³⁺	Cf ³⁺	Es ³⁺
Dxidation state +3 +4	89 Ac ³⁺	90 Th ³⁺ Th ⁴⁺	91 Pa ³⁺ Pa ⁴⁺	92 U ³⁺ U ⁴⁺	93 Np ³⁺ Np ⁴⁺	94 Pu ³⁺ Pu ⁴⁺	Am ³⁺	Cm ³⁺ Cm ⁴⁺	Bk ³⁺ Bk ⁴⁺	Cf ³⁺ Cf ⁴⁺	Es ³⁺
Dxidation state +3 +4 +5	89 Ac ³⁺	90 Th ³⁺ Th ⁴⁺	91 Pa ³⁺ Pa ⁴⁺ PaO ₂ ⁺	92 U ³⁺ U ⁴⁺ UO ₂ ⁺	93 Np ³⁺ Np ⁴⁺ NpO ₂	94 Pu ³⁺ Pu ⁴⁺ PuO ₂ ⁺	Am ³⁺ Am ⁴⁺ AmO ₂ ⁺	Cm ³⁺ Cm ⁴⁺	Bk ³⁺ Bk ⁴⁺	Cf ³⁺ Cf ⁴⁺	Es ³⁺
Dxidation state +3 +4 +5 +6	89 Ac ³⁺	90 Th ³⁺ Th ⁴⁺	91 Pa ³⁺ Pa ⁴⁺ PaO ₂ ⁺	92 U ³⁺ U ⁴⁺ UO ⁺ ₂	93 Np ³⁺ Np ⁴⁺ NpO ₂ ⁺	94 Pu ³⁺ Pu ⁴⁺ PuO ₂ ⁺ PuO ₂ ²⁺	Am ³⁺ Am ⁴⁺ AmO ₂ ⁺	Cm ³⁺ Cm ⁴⁺	BK ³⁺ BK ⁴⁺	Cf ³⁺ Cf ⁴⁺	Es ³⁺

Electronic Spectra

- Narrow bands (compared to transition metal spectra).
- Relatively uninfluenced by ligand field effects.
- Intensities are ca. 10 x those of lanthanide bands.
- Complex to interpret.

16

