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Electric flux is the rate of flow of the electric field through a given area (see ).

Electric flux is proportional to the number of electric field lines going through a virtual surface.

If the electric field is uniform, the electric flux passing through a surface of vector area 

S is Φ(E)=E⋅S=E S cos(θ) => Φ(E)=E⋅S=E S cos(θ) where E is the magnitude of the 

electric field (having units of V/m), S is the area of the surface, and θ is the angle 

between the electric field lines and the normal ( perpendicular ) to S.

For a non-uniform electric field, the electric flux dΦ(E) through a small surface area 

dS is given by dΦ(E)=E⋅dS => dΦ(E)=E⋅dS (the electric field, E, multiplied by the 

component of area perpendicular to the field).





Electric Flux

We define the electric flux , of the electric

field E, through the surface A, as:

 = E . A

Where:

A is a vector normal to the surface  

(magnitude A, and direction normal to the surface).

 is the angle between E and A

area A

E

A

 = E A cos ()



Here the flux is

 = E · A

You can think of the flux through some surface as a measure of

the number of field lines which pass through that surface.

Flux depends on the strength of E, on the surface area, and on

the relative orientation of the field and surface.

Normal to surface,

magnitude Aarea A

E

A

E

A 



Electric Flux

The flux also depends on orientation

area A



A cos 

The number of field lines through the tilted surface    equals the

number through its projection   . Hence, the flux through the tilted

surface is simply given by the flux through its projection: E (A cos).

 = E . A = E A cos 

area A



A cos 

E E

A A



Exercise: Calculate the flux of the electric field E,

through the surface A, in each of the 

three cases shown:

a)  =

b)  =

c)  =




dA

E

What if the surface is curved, or the field varies with position ??

1. We divide the surface into small regions with area dA

2. The flux through  dA is d = E dA cos 

d = E . dA

3. To obtain the total flux we need

to integrate over the surface A

A
 =  d =  E . dA

 = E . A

Electric flux has SI units of volt metres (V m), or, equivalently, 

newton metres squared per coulomb (N m2 C−1). Thus, the SI base 

units of electric flux are kg·m3·s−3·A−1.



In the case of a closed surface

     


d E dA

q
inside

0

The loop means the integral is over a closed surface.


dA

E



For a closed surface:

The flux is positive for field lines that leave the enclosed volume.

The flux is negative for field lines that enter the enclosed volume.

If a charge is outside a closed surface, the net flux is zero.

As many lines leave the surface, as lines enter it.



For which of these closed surfaces (a, b, c, d) the flux of the 

electric field, produced by the charge +2q, is zero?



Spherical surface with point charge at center

d E dA     

Flux of electric field:

2

0

1  
  cos

4

q dA
E dA

r



   

2
but ,  then:

dA
d

r
 

0 0 0

4
4 4

q q q
d 

  
    

0

   Gauss's Law

enclosedq
E dA


 



In geometry, a solid angle (symbol: Ω) is a measure of the amount

of the field of view from some particular point that a given object covers.

That is, it is a measure of how large the object appears to an observer

looking from that point.

The point from which the object is viewed is called the apex of the solid

angle,and the object is said to subtend its solid angle from that point.

In the International System of Units (SI), a solid angle is expressed in

a dimensionless unit called a steradian (symbol: sr).

One steradian corresponds to one unit of area on the unit sphere

surrounding the apex, so an object that blocks all rays from the apex

would cover a number of steradians equal to the total surface area of the

unit sphere.
Solid angles can also be measured in squares of angular measures such

as degrees, minutes, and seconds.

https://en.wikipedia.org/wiki/Geometry
https://en.wikipedia.org/wiki/Field_of_view
https://en.wikipedia.org/wiki/Subtended_angle
https://en.wikipedia.org/wiki/International_System_of_Units
https://en.wikipedia.org/wiki/Dimensionless_quantity
https://en.wikipedia.org/wiki/Unit_of_measurement
https://en.wikipedia.org/wiki/Steradian
https://en.wikipedia.org/wiki/Unit_sphere
https://en.wikipedia.org/wiki/Surface_area
https://en.wikipedia.org/wiki/Square_degree


Gauss’s Law

This is always true. Occasionally, it provides a very easy

way to find the electric field (for highly symmetric

cases).

The electric flux through any closed surface

equals  enclosed charge / 0.

Gauss’s law is a law relating the distribution of electric charge

to the resulting electric field.

     


d E dA

q
inside

0



Calculate the flux of the electric field  for each of the

closed surfaces a, b, c, and d

Surface a, a =

Surface b, b =

Surface c, c =

Surface d, d =



Calculate the electric field produced 

by a point charge using Gauss Law

We choose  for the gaussian surface a sphere 

of radius r, centered on the charge Q.

Then, the electric field E, has the same 

magnitude everywhere on  the surface 

(radial symmetry) 

Furthermore, at each point on the surface,

the field E and the surface normal dA are 

parallel (both point radially outward).

E . dA =  E dA   [cos  = 1]



Is Gauss’s Law more fundamental than 
Coulomb’s Law?

No! Here we derived Coulomb’s law for a point charge from
Gauss’s law.

One can instead derive Gauss’s law for a general (even very
nasty) charge distribution from Coulomb’s law. The two laws are
equivalent.

Gauss’s law gives us an easy way to solve a few very symmetric
problems in electrostatics.

It also gives us great insight into the electric fields in and on
conductors and within voids inside metals.



E

Q

Coulomb’s Law !

E 
1

40

q

r 2

 E . dA = Q / 0

 E . dA = E  dA = E A

A  = 4  r2

E A  = E  4  r2 = Q / 0

Electric field  produced

by a point charge

E

Q

k = 1 / 4  0

0 = permittivity

0 = 8.85x10-12 C2/Nm2



  E  d A =
Qenclosed

0

Gauss’s Law

The total flux within

a closed surface …

… is proportional to

the enclosed charge.

Gauss’s Law is always true, but is only useful for certain 

very simple problems with great symmetry.



Applying Gauss’s Law

Gauss’s law is useful only when the electric field 

is constant on a given surface

Infinite sheet of charge

1. Select Gauss surface

In this case a cylindrical

pillbox

2. Calculate the flux of the

electric field through the 

Gauss surface

 = 2 E A

3. Equate  = qencl/0

2EA = qencl/0

4. Solve for E

E = qencl / 2 A 0 =  / 2 0

(with  = qencl / A)



GAUSS LAW – SPECIAL SYMMETRIES

SPHERICAL
(point or sphere)

CYLINDRICAL
(line or cylinder)

PLANAR
(plane or sheet)

CHARGE

DENSITY

Depends only on 

radial distance 

from central point

Depends only on

perpendicular distance 

from line

Depends only on 

perpendicular distance 

from plane

GAUSSIAN

SURFACE
Sphere centered at 

point of symmetry

Cylinder centered at 

axis of symmetry

Pillbox or cylinder

with axis

perpendicular to plane

ELECTRIC

FIELD E

E constant at 

surface

E ║A - cos  = 1

E constant at curved 

surface and E ║ A

E ┴ A at end surface

cos  = 0

E constant at end 

surfaces and E ║ A

E ┴ A at curved surface

cos  = 0

FLUX 



Cylindrical geometry

Planar geometry

Spherical geometry

E



A charge Q is uniformly distributed through a sphere of radius R.

What is the electric field as a function of r?. Find E at r1 and r2.

Problem: Sphere of Charge Q

r2

r1

R



A charge Q is uniformly distributed through a sphere of radius R.

What is the electric field as a function of r?. Find E at r1 and r2.

Problem: Sphere of Charge Q

Use symmetry!

This is spherically symmetric.

That means that E(r) is radially

outward, and that all points, at a

given radius (|r|=r), have the same

magnitude of field.

r2

r1

R

E(r1)

E(r2)



Problem: Sphere of Charge Q

E & dA

r

R

What is the enclosed charge?

First find E(r) at a point outside the charged sphere.  Apply Gauss’s

law, using as the Gaussian surface the sphere of radius r pictured.



Problem: Sphere of Charge Q

r

R

E & dA What is the enclosed charge?    Q

What is the flux through this surface?

  E d A  EdA
 E dA  EA  E(4 r

2
)

Gauss:   Q /o

So E (r ) 
1

4o

Q

r
2

ˆ r 
Exactly as though all the 

charge were at the origin!

(for r>R)

Q/ 0    E(4 r
2
)

First find E(r) at a point outside the charged sphere.  Apply Gauss’s

law, using as the Gaussian surface the sphere of radius r pictured.



Problem: Sphere of Charge Q

R

r
E(r

)

Next find E(r) at a point inside the sphere. Apply Gauss’s law,

using a little sphere of radius r as a Gaussian surface.

What is the enclosed charge?

That takes a little effort.  The little sphere has

some fraction of the total charge.  What fraction?

That’s given by volume ratio: Q enc 
r 3

R
3 Q

Again the flux is:  = EA = E(4 r
2
)

Setting   Qenc /o gives E =
(r3 / R3)Q

4or
2

E (r ) =
Q

4oR
3 r ˆ r For r<R



Problem: Sphere of Charge Q



Problem: Sphere of Charge Q

Look closer at these results.  The electric field at      comes 

from a sum over the contributions of all the little bits    .

It’s obvious that the net E at this point will be horizontal. But the

magnitude from each bit is different; and it’s completely not obvious

that the magnitude E just depends on the distance

from the sphere’s center to the observation point.

Doing this as a volume integral would be HARD.

Gauss’s law is EASY.

R

Q r
r > R





Problem: Infinite charged plane

Consider an infinite plane with a constant surface charge density 

(which is some number of Coulombs per square meter).  

What is E at a point located a distance z above the plane?

x

y

z





Problem: Infinite charged plane

Consider an infinite plane with a constant surface charge density 

(which is some number of Coulombs per square meter).  

What is E at a point located a distance z above the plane?

x

y

z

Use symmetry!

The electric field must point straight away

from the plane (if  > 0).  Maybe the 

Magnitude of E depends on z, but the direction 

is fixed.  And E is independent of x and y.

E



E

E

Gaussian “pillbox”



Problem: Infinite charged plane

So choose a Gaussian surface that is a “pillbox”, which has its top

above the plane, and its bottom below the plane, each a distance z

from the plane. That way the observation point lies in the top. 

z
z



E

E

Gaussian “pillbox”



Problem: Infinite charged plane

z
z

Let the area of the top and bottom be A.

Total charge enclosed by box = A



E

E

Gaussian “pillbox”



Problem: Infinite charged plane

z
z

Outward flux through the top:       EA

Outward flux through the bottom: EA

Outward flux through the sides:    E x (some area) x cos(900) = 0

So the total flux is:                         2EA

Let the area of the top and bottom be A.



E

E

Gaussian “pillbox”



Problem: Infinite charged plane

z
z

Gauss’s law then says that  A/0=2EA so that  E=/20, outward.

This is constant everywhere in each half-space!

Let the area of the top and bottom be A.

Notice that the area A canceled: this is typical!



Problem: Infinite charged plane

Imagine doing this with an integral over the charge distribution:

break the surface into little bits dA …



dE

Doing this as a surface integral would be HARD.

Gauss’s law is EASY.



Consider a long cylindrical charge distribution of radius R,

with charge density  = a – b r (with a and b positive).

Calculate the electric field for:

a) r < R

b) r = R

c) r > R



A conductor is a material in which charges can move relatively
freely.

Usually these are metals (Au, Cu, Ag, Al).

Excess charges (of the same sign) placed on a conductor will
move as far from each other as possible, since they repel each
other.

For a charged conductor, in a static situation, all the charge
resides at the surface of a conductor.

For a charged conductor, in a static situation, the electric field
is zero everywhere inside a conductor, and perpendicular to
the surface just outside

Conductors



Conductors

Why is E = 0 inside a conductor?

Conductors are full of free electrons, roughly one per 

cubic Angstrom.  These are free to move.  If E is 

nonzero in some region, then the electrons there feel

a force -eE and start to move.

In an electrostatics problem, the electrons adjust their 

positions until the force on every electron is zero (or

else it would move!). That means when equilibrium is

reached, E=0 everywhere inside a conductor.



Conductors

Because E = 0 inside, the inside of a conductor is neutral.

Suppose there is an extra charge     inside.

Gauss’s law for the little spherical surface

says there would be a nonzero E nearby.

But there can’t be, within a metal!

Consequently the interior of a metal is neutral.  

Any excess charge ends up on the surface.



Electric field just outside a charged conductor

0 0

0

enclosed

E dA EA

q A
EA

E



 





   

 





The electric field just outside a charged conductor 

is perpendicular to the surface and has magnitude E = / 0



Properties of Conductors

In a conductor there are large number of electrons free to move.

This fact has several interesting consequences

Excess charge placed on a conductor moves to the exterior 

surface of the conductor.

The electric field inside a conductor is zero when charges 

are at rest. 

A conductor shields a cavity within it from external electric fields.

Electric field lines contact conductor surfaces at right angles

A conductor can be charged by contact or induction

Connecting a conductor to ground is referred to as grounding

The ground can accept of give up an unlimited number of electrons





a

b

Problem: Charged coaxial cable

This picture is a cross section of an infinitely long line of charge,

surrounded by an infinitely long cylindrical conductor.  Find E.

This represents the line of charge.

Say it has a linear charge density of l

(some number of C/m).

This is the cylindrical conductor.  It 

has inner radius a, and outer radius b.

Use symmetry!
Clearly E points straight out, and its

amplitude depends only on r.



Problem: Charged coaxial cable

First find E at positions in the space inside the cylinder (r<a).

Choose as a Gaussian surface:

a cylinder of radius r, and length L.

r

L



What is the charge enclosed?   lL

What is the flux through the end caps?   zero (cos900)

What is the flux through the curved face?  E x (area) = E(2rL)

Total flux = E(2rL)

Gauss’s law  E(2rL) = lL/0 so    E(r) = l/ 2r0

Problem: Charged coaxial cable

First find E at positions in the space inside the cylinder (r<a).

r

L



Problem: Charged coaxial cable

Now find E at positions within the cylinder (a<r<b).

Make the same kind of cylindrical Gaussian

surface.  Now the curved side is entirely

within the conductor, where E=0; hence the

flux is zero.

There’s no work to do:  within a conductor E=0.

Still, we can learn something from Gauss’s law.

r+

Thus the total charge 

enclosed by this surface must be zero.



Problem: Charged coaxial cable

+

+

r+

-
-

--

-

-

+

++

+

There must be a net charge per unit length 

–l attracted to the inner surface of the 

metal so that the total charge enclosed by 

this Gaussian surface is zero.

And since the cylinder is neutral, these

negative charges must have come from

the outer surface.  So the outer surface

has a charge density per unit length of 

+l spread around the outer perimeter.

So what is the field for r>b?  


