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2 switching algebra to describe circuits

R

* We will apply switching algebra to describe circuits containing
switches. We will label each switch with a variable. If switch X is open,
then we will define the value of X to be O; if switch X is closed, then

we will define the value of X to be 1.

\
P X = 0 — switch open
o—o

X =1 — switch closed

~ o/ - ,\,J\
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—* Now consider a circuit composed of two switches in a series.

 We will define the transmission between the terminalsas T =0
If there Is an open circuit between the terminalsand T = 1 if
there Is a closed circuit between the terminals.

74" 4 - I'=0- open circuit between terminals 1 and 2
| 0—= Y .

“ T=1-closed circuit between terminals 1 and 2

Now we have a closed circuit between terminals 1 and 2 (T = 1) Iff (|f
and only If ) switch A is closed and switch B Is closed. Stating this
algebraically,

T=A.Bu \/ @ Q)
9\
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* Next consider a circuit composed of two switches in parallel.
e
lo—y —=o
e
In this case, we have a closed circuit between terminals 1 and 2 iff

switch A is closed or switch B is closed. Using the same convention for
defining variables as above, an equation which describes the behawor'

of this circuit Is

T=A+BY J (O S )
3\



J 2.6 SIMPLIFICATION THEOREMS
XY+ XY =X (2-12) X+NX+Y)=X (2-12D)
X+XY=X (2-13) XX+N=X (2-13D)
X+ Y)Y=XY (2-14) XY +Y=X+Y (2-14D)

* In each case, one expression can be replaced by a simpler one. Because
each expression corresponds to a circuit of logic gates, simplifying an
expression leads to simplifying the corresponding logic circuit.
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\/ 2.6 SIMPLIFICATION THEOREMS

 Each of the preceding theorems can be proved by using a truth table, or
they can be proved algebraically starting with the basic theorems.

Proof of (2-13): X+XY=X-1+4XY=X(1+Y)=X-1=X
Proof of (2-13D): X(X+Y)=XX+XY=X+XY=X

(by (2-6D) and (2-13))
Proof of (2-14D): Y+ XY' =(Y+X)(Y+Y)=(Y+X)1=Y+X

(by (2-11 D) and (2-8))



? 2.6 SIMPLIFICATION THEOREMS

"« The following example illustrates simplification of a logic gate circuit using
one of the theorems. In Figure 2-4, the output of circuit (a) Is

F=A(A'+B)
F=AA'+ AB=0+ AB = AB

* By Theorem (2-14), the expression for F simplifies to AB. Therefore, circuit
(a) can be replaced with the equivalent circuit (b).

4 A — _
B " F | a F ~
A — H—

(a) (b)
FIGURE 2-4: Equivalent Gate Girfuits X J.

p—
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~ SIMPLIFY Z=A'BC + A’
This expression has the same form as (2-13) if we let X = A"and Y = BC.
Therefore, the expression simplifiesto Z =X+ XY =X (1+Y)=X=A".
EXAMPLE 2
Simplify Z=[A+BC+D+EF][A+ BC+ (D + EF)]
Substituting:Z=[ X + Y [ X + Y ]

Then, by (2-12D), the expression reduces to
Z=X=A+BC /

T N N
N/ 5 \}



“ZEXAMPLE 3
Simplify  Z=(AB+ C)(B'D + C’E’) + (AB + C)"’
Substituting: Z = Y’ X + Y

By, (2-14D). Z=X+Y=B'D+ C'E' + (AB+ C)’

- e/
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2.8 Demorgan’s Laws
* The inverse or complement of any boolean expression can easily be

found by successively applying the following theorems, which are

frequently referred to as demorgan’s laws:

(X<t ¥} =XF (2-21)
(XY) =X"+Y (2-22)
* We will verify these laws using a truth table:
XY XY X+Y (X+Y) XY XY (XY) X +Y
00 11 0 1 1 0 1 1
01 10 1 0 0 0 1 1
10 01 1 0 0 0 1 1
11 00 1 0 0 1 0 0
Y



2.8 Demorgan’s Laws

* Demorgan’s laws are easily generalized to n variables:
(X1 T XZ =+ X3 2 B U Xn)'.= Xl’ Xz’ X3’ oo .Xn’ (2‘23)
(X1X2X3 oo .Xn)' — Xl’ + Xz' + X3' S NP X,,' (2“24)
For example, for n = 3,

X; + X + X3)" = (X; + X5)'X5" = X' XXy




— 2.8 Demorgan’s Laws )
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Referring to the OR operation as the logical sum and the AND
operation as logical product, DeMorgan’s laws can be stated as
The complement of the product is the sum of the complements.
The complement of the sum is the product of the complements.
To form the complement of an expression containing both OR and
AND operations, DeMorgan’s laws are applied alternately.




- e/

s ©

S

- Example 1 et

* To find the complement of (A" + B)C/, first apply (2-22) and then (2-21).
[(A'+ B)C']'=(A"+B)' + (C')' = AB' + C

Example 2

[(AB’ + C)D’ + E]’ = [(AB’ + C)D'VE’  (by (2-21))
= [(AB" + C)" + DIE" (by (2-22))
— [(AB’)'C’ + DIE’  (by (2-21))
= [(A" + B)C' + D]E" (by (2-22)) (2-25)]|

Note that in the final expressions, the complement operation is -/
applied only to single variables. ol — ) & )
3\



: 2.8 Demorgan’s Laws /

The inverse of F=A'B + AB’" 1s

F' = (A’'B+ AB’) = (A’B)’(AB’)’ = (A + B’)(A’ + B)
— AA’ + AB + B'A’ + BB’ = A’'B’ + AB

We will verify that this result is correct by constructing a
truth table for F and F”.

AB A'B AB’ F=AB + AB’ A'B’ AB FF=AB + AB
00 0 0 0 1 0 1
01 1 0 1 0 0 0
10 0 1 1 0 0 0
11 0 0 0 0 1 1
- N
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2.8 Demorgan’s Laws —

In the table, note that for every combination of values of A
and B for which F=0, FF = 1; and whenever F=1, F = 0.
Given a Boolean expression, the dual is formed by replacing
AND with OR,OR with AND, O with 1, and 1 with O.

Variables and complements are left unchanged.

The dual of AND is OR and the dual of OR is AND:

XYZ.. )P =X+Y+Z+... (X+Y+Z+. ) =XxvZ... (2-26)

-/
A e e )



2.8 Demorgan’s Laws —

The dual of an expression may be found by complementing the
entire expression and then complementing each individual
variable. For example, to find the dual of AB' + C,

XYZ..\V'=X+Y+Z+... (X+YV+Z+..)=X1Z... (22



aws’and Theorems of Boolean Algebra

Operations with 0 and 1:

O

I X=X 1D. X-1=X
2o XA =1 2D. X-0=0
Idempotent laws:

3. X+ X—X 3D. X- X=X

Involution law:
4. (X' =X

Laws of complementarity:
. X+ X=1 SD. X-X"=0

Commutative laws:
6. X+Y=Y+ X 6D. XY =YX 9
Associative laws: ?)
7. (X+Y)+Z=X+ (Y + Z) TD. (XY)Z = X(YZ) = XYZ
=X+Y+ Z




aws’and Theorems of Boolean Algebra o

Distributive laws:
8. X(Y+ Z)=XY + XZ

8D. X + YZ= (X + Y)(X + Z)

Simplification theorems:
9. XY+ XY' =X OD. (X +NX+Y) =X
10. X+ XY=X 10D. X(X+Y)=X

11. X+ Y)Y =XY 11D. XYY"+ Y=X+7Y

DeMorgan’s laws:
12 (XX ) =KW 12D (XX L ) =X ¥ - =8k o

Duality:
13. X+ Y+Z+ .. )°=XYZ... 13D. (XYZ.. )P =X+Y+Z+ ...

Theorem for multiplying out and factoring:
4. X+ VNX"'+2)=XZ+ XY 4D. XY+ XZ=(X+Z}X"+Y)

Consensus theorem:
15. XY+ YZ+ X Z=XY + X'Z 15SD. (X + Y Y+ 2Z2)Y X'+ Z)
=(X+Y)(X " +2)

)
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~— Problems

N’
2.1 Prove the following theorems algebraically:
(a) X(X'+Y)=XY (b) X+XY=X
(c) XY+ XY =X (d) (A+B)A+B)=A

2.2 [Illustrate the following theorems using circuits of switches:
(@) X+X¥Y=X (b)) X+YZ=X+Y)X+2Z)
In each case, explain why the circuits are equivalent.

2.3 Simplify each of the following expressions by applying one of the theorems. State
the theorem used (see page 55).
(a) XYZ+ (X'YZ) (b) (AB’ + CD)(B’E + CD) _
(c) ACF + AC'F (d) A(C+ D'B) + A’ J
(e) (A’'B+ C+D)AB+D) (f) (A+BC)+ (DE+ F)(A+ BC)

] < I )
V . ’.—‘/j v \ )
£ . J




UNIT 3

BOOLEAN ALGEBRA (CONTINUED) C




OBJECTIVES

i
__ * When you complete this unit, you should know from memory and be able to use any of the laws and
theorems of boolean algebra listed at the end of unit 2. Specifically, you should be able to
* 1. Apply these laws and theorems to the manipulation of algebraic expressions including:
A. Simplifying an expression.
B. Finding the complement of an expression.
C. Multiplying out and factoring an expression.
* 2. Prove any of the theorems using a truth table or give an algebraic proof if appropriate.
* 3. Define the exclusive-or and equivalence operations. State, prove, and use the basic theorems that
concern these operations. ®)

4. Use the consensus theorem to delete terms from and add terms to a switching expression.

5. Given an equation, prove algebraically that it is valid or show that it is not valid.

Y N - o



\_// 3.1 MULTIPLYING OUT AND FACTORING
- EXPRESSIONS

R

» Given an expression in product-of-sums form, the corresponding
sum-of-products expression can be obtained by multiplying out,
using the two distributive laws:

X(Y+Z)=XY + XZ (3-1)
( X+ YN X+Z)=X+YZ (3-2)
In addition, the following theorem is very useful for factoring
and multiplying out: &
X+ Y)X +Z)=XZ+X'Y (3-3)
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/3.1 MULTIPLYING OUT AND FACTORING

EXPRESSIONS i

* Note that the variable that is paired with X on one side of the equation

is paired with X on the other side, and vice versa.

* Proof:

HX=0.(33)reducestoY(1 +Z)=0+1-Y or Y=Y
fX=1.(3-3)reducesto(1+ Y)Z=Z+0-Y or Z =72

Because the equation is valid for both X =0 and X =1, it is always valid.
The following example illustrates the use of Theorem (3-3) for factoring:

:\1)’*1( (A+ C)Y A"+ B)
~ o/ - v



-4 3.1 MULTIPLYING OUT AND FACTORING

EXPRESSIONS i

* Note that the theorem can be applied when we have two terms, one

which contains a variable and another which contains its complement.

* Theorem (3-3) is very useful for multiplying out expressions. In the
following example, we can apply (3-3) because one factor contains the

variable Q, and the other factor contains Q’.

A, - v ,\
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/3.1 MULTIPLYING OUT AND FACTORING

EXPRESSIONS s

* If we simply multiplied out by using the distributive law, we would get
four terms instead of two:

(0 +AB)(C'D+Q')=0CD + 00"+ AB'C'D + AB'Q’

* Because the term AB’C’'D is difficult to eliminate, it is much better to use

(3-3) instead of the distributive law.
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-

EXPRESSIONS

* In general, when we multiply out an expression, we should use (3-3)
along with (3-1) and (3-2).

* To avoid generating unnecessary terms when multiplying out, (3-2)
and (3-3) should generally be applied before (3-1), and terms should

be grouped to expedite their application.
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&
O (ALB+C)A+B+D)A+B+E)A+ D'+ E)A' +C)

=4 _‘T(_B +C'D) A+ B+ E)AC+A'(D' + E)]

= (A ¥ B+ C'DE)(AC+ A'D' + A'E)

= AC+ ABC + A'BD' + A'BE + A'C'DE (3-4)

* The same theorems that are useful for multiplying out expressions
are useful for factoring. By repeatedly applying (3-1), (3-2), and
i

(3-3), any expression can be converted to a product-of-sums form.

. J
° I s,



EXAMPLE OF FACTORING

AC + A'BD" + A’BE + A'C°'DE
—AC + A'(BD’ + BE + C’'DE)
Xz A= Y
— (A + BD" + BE +~ C"DE)YA" + C)
=[A + C"DE + B(D’' + E)}(A®" + ©O)
F Y b

=(A+B+CDEYA+EBE+D + E)A'+ C)
=(A+B+CYA+B+D)A+B+E)A+D +E)A"+C) (35
; “’:‘4:_ 2 | e :;,—i".; ' ’ @)
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\-/32 EXCLUSIVE-OR AND EQUIVALENCE OPERATIONS

[ J
-

* The exclusive-or operation (&) is defined as follows:

* The truth table for X & Y is

XY
00
01
10
1 1

= ™

Sy



3.2 EXCLUSIVE-OR AND EQUIVALENCE OPERATIONS

e
o

From this table, we can see that X @ Y=11ff X=1or ¥ =1, but nof both, The
ordinary OR operation, which we have previously defined, 1s sometimes called
inclusive OR because X + Y =11iff X=10r Y =1, or both,

Exclusive OR can be expressed in terms of AND and OR. Because X @ Y = |
- iffXisOand Yislor Xis1and Yis 0, we can write |

XQY=XY+XY (36) |
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The first termin (3-6) s 1 if X=0and Y = 1; the second term is 1 if X =1 and
Y = (. Alternatively, we can derive Equation (3-6) by observing that X @ Y = 1 iff
X=1lorY=1and X and Y are not both 1. Thus.

XeY=X+Y)XY)=(X+Y)X+Y')=XTY+ XY (3-7)

In (3-7). note that (X Y)' = 1 if X and Y are not both 1.
We will use the following symbol for an exclusive-OR gate:

P | k&



~3.2 EXCLUSIVE-OR AND EQUIVALENCE OPERATIONS

~ The following theorems apply to exclusive OR:

X@0=X (3-8)
Xel=X (3-9)
X@X=10 (3-10)
XX =1 (3-11)
XA@Y=Y®X (commutative law) (3-12) |
(X@Y)BZ=X®(Y&Z)=X2Y@ Z (associative law) (3-13)
X(Y@Z)= XY ® XZ (distributive law) (3-14)

(X®Y) =X0Y =XOY=XY+ XY (3-15)
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* Any of these theorems can be proved by using a truth table or by
replacing X @ Y with one of the equivalent expressions from Equation

(3-7).
* Proof of the distributive law follows:
XYDRXZ=XY(XZ) +(XY)XZ=XY(X"+2Z')+ (X" + Y')XZ
= XYZ' + XY'Z
= X(YZ'+YZ)=X(Y® Z)
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“3.2 EXCLUSIVE-OR AND EQUIVALENCE OPERATIONS

The equivalence operation () is defined by

(0=0)=1 (0=1)=0
(1=0)=0 (1=1)=1

The truth table for X=Y is

>

-0 O -l
q<
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~ 3.2 EXCLUSIVE-OR AND EQUIVALENCE OPERATIONS

From the definition of equivalence, we see that (X=Y)=1 iff X =Y. Because
(X=Y)=1fft X=Y=1o0or X =Y = (. we can write

(X=Y)=XY+ XY (3-17)
Equivalence is the complement of exclusive-OR:
(X2Y)=XY+XY)=(X+Y)X" +Y)
= XY+ X'Y =(X=Y) (3-18)

Just as for exclusive-OR, the equivalence operation is commutative and associative.
We will use the following symbol for an equivalence gate:

)
y

—X=Y
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~3.2 EXCLUSIVE-OR AND EQUIVALENCE OPERATIONS

Because equivalence is the complement of exclusive-OR, an alternate symbol for
the equivalence gate is an exclusive-OR gate with a complemented output:

’;(x@m(x:n

The equivalence gate is also called an exclusive-NOR gate.

_k\ e e s F e - - --J'd_:




~ 3.2 EXCLUSIVE-OR AND EQUIVALENCE OPERATIONS _

In order to simplify an expression which contains AND and OR as well as
exclusive OR and equivalence, it is usually desirable to first apply (3-6) and (3-17)

to eliminate the © and = operations. As an example, we will simplify

F=(A'B=C) + (B ® AC")

By (3-6) and (3-17).
F=[(A'B)C + (A'B)'C'] + |B"(AC") + B(AC")"]
=A'BC+(A+B')C'+ AB'C’ + B(A' + C)
=B(A'C+A'"+C)+C'(A+B"+AB")Y=B(A'"+C)+ C'(A+ B')

When manipulating an expression that contains several exclusive-OR or equiv-
alence operations, it is useful to note that

(XY’ + X'Y) = XY + XY’ (3-19)




© 3.2 EXCLUSIVE-OR AND EQUIVALENCE OPERATIONS

For example,

AOBOC=[A'B +(A")B|®C
=(A'B'+AB)C'+(A'B'+ ABYC  (by(36)
“(AB+ABC +(AB+AB)C  (by(:19)

=A'B'C' +ABC + A'BC + AB'C

S—
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J 3.3 THE CONSENSUS THEOREM

The consensus theorem is very useful in simplifying Boolean expressions, Given an

expression of the form XY + X'Z + YZ, the term YZ is redundant and can be elim-
inated to form the equivalent expression XY + X'Z,

The term that was eliminated is referred to as the consensus term. Given a pair
of terms for which a variable appears in one term and the complement of that vari-

able in another, the consensus term is formed by multiplying the two original terms
together, leaving out the selected variable and its complement. For example, the

consensus of ab and a'c is be; the consensus of abd and b'de’ is (ad)(de') = ade’. The
consensus of terms ab'd and a'hd" is 0. - -
e o )




3.3 THE CONSENSUS THEOREM

e' consensus theorem can be stated as follows:
XY+ XZ+YZ=XY+XZ

Proof:
| AY+ X Z+YZ=XY+XZ+(X+X)YZ
=AY +AXYZ)+ (X' Z+X'YZ)



//4//
—

2 3.3 THE CONSENSUS THEOREM ~

The consensus theorem can be used to eliminate redundant terms from
Boolean expressions. For example, in the following expression, bc Is

the consensus of ab and ac, and ab Is the consensus of ac and bc, so
both consensus terms can be eliminated:

|—|' |
ﬁ‘ 'hb" + .ir-L bhe' + ?“c' + ab=a'b' + ac + bc’

The brackets indicate how the consensus terms are formed. The
dual form of the consensus theorem is

(X+ YW +Z2)Y+Z2)=(X+Y)IX + Z) (3-21) ¥

T— \\

-/
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9 EXPRESSIONS

* In this section we review and summarize methods for simplifying
switching expressions, using the laws and theorems of boolean

algebra.

* In addition to multiplying out and factoring, three Basic ways of
simplifying switching functions are combining terms, eliminating terms,

and eliminating literals.

1. Combining terms. Use the theorem XY + XY’ = X to combine two terms. For
example, /
abc'd' + abed' = abd'’ | X =abd',Y = c| (3-24
- '\ 7/



3.4 ALGEBRAIC SIMPLIFICATION OF SWITCHING ™~

d EXPRESSIONS

* When combining terms by this theorem, the two terms to be
combined should contain exactly the same variables, and
exactly one of the variables should appear complemented

 In one term and not in the other. Because X X X, a given term

may be duplicated and combined with two or more other terms.
For example, ~

fi"h!{w + 1’?{’.?{'1 + l’?!f‘_]{" — fi"hF{w + {'.I'I,.]'(" + f”l.][" + fi"rhf = {Ic + I’.]‘f" \/
- N’ V \ /
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S’

* The theorem still can be used, of course, when X and Y are
replaced with more complicated expressions. For example,

(a+ be)d+e')+a (b +c')d+e')=d+ée
I X=d+e' . Y=a+bc, Y =a (b + ')
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EXPRESSIONS -

N’

2. Eliminating terms. Use the theorem X + XY = X to eliminate redundant terms
If possible: then try to apply the consensus theorem (XY + X'Z + YZ = XY +
X'Z) to eliminate any consensus terms. For example,

a'b+a'bc=a'b X =a'b|
a'bc’ + bed + a'bd = a'bc’ + bed | X=c¢, Y=D>bd Z=a'b| (3-25)

3. Eliminating literals. Use the theorem X + XY = X + Y to eliminate redundant

literals. Simple factoring may be necessary before the theorem is applied.
o — o - ).
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3.4 KLGEBRAIC SIMPLIFICATION OF SWITCHING
EXPRESSIONS -

et

Example

A'B+A'B'C'D' + ABCD' = A'(B + B'C'D') + ABCD'
= A'(B+C'D') + ABCD'
= B(A' + ACD') + A'C'D'
=B(A'+CD') + A'C'D’
=A'B+BCD' + A'C'D’ (3-26)
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4. Adding redundant terms Redundant terms can be introduced in several ways
such as adding xx’, multiplying by (x + x'). adding yz to xy + x'z, or adding xy
to x. When possible, the added terms should be chosen so that they will combine
with or eliminate other terms.

Example

WX+ XY+ X' 2"+ WY'Z' (add WZ' by consensus theorem)

= WX+ XY +X2Z'+WYZ -+ W& (eliminate WY'Z')

=WX+ XY+ XZ + WZ (eliminate WZ') -
=WX+ XY+ X'Z (3-27) = '

~ e



