
UNIT 4

LECTURE 5

APPLICATIONS OF BOOLEAN ALGEBRA 

MINTERM AND MAXTERM

EXPANSIONS



OBJECTIVES

1. Given a word description of the desired behavior of a logic circuit, write

the output of the circuit as a function of the input variables. Specify this function 

as an algebraic expression or by means of a truth table, as is appropriate.

2. Given a truth table, write the function (or its complement) as both a minterm

expansion (standard sum of products) and a maxterm expansion (standard 

product of sums). Be able to use both alphabetic and decimal notation.

3. Given an algebraic expression for a function, expand it algebraically to obtain 

the minterm or maxterm form.



OBJECTIVES

4. Given one of the following: minterm expansion for F, minterm expansion

for F, maxterm expansion for F, or maxterm expansion for F , find any of the 

other three forms.

5. Write the general form of the minterm and maxterm expansion of a function

of n variables.

6. Explain why some functions contain don’t-care terms.

7. Explain the operation of a full adder and a full subtracter and derive logic

equations for these modules. Draw a block diagram for a parallel adder

or subtracter and trace signals on the block diagram.



• In this unit you will learn how to design a combinational logic circuit 

starting with a word description of the desired circuit behaviour.

• The first step is usually to translate the word description into a truth table 

or into an algebraic expression.

• Given the truth table for a boolean function, two standard algebraic 

forms of the function can be derived—the standard sum of products 

(minterm expansion) and the standard product of sums (maxterm

expansion).

• Simplification of either of these standard forms leads directly to a 

realization of the circuit using AND and OR gates.



4.1 CONVERSION OF ENGLISH SENTENCES
TO BOOLEAN EQUATIONS

• The three main steps in designing a single-output combinational 

switching circuit are

1. Find a switching function that specifies the desired behaviour of 

the circuit.

2. Find a simplified algebraic expression for the function.

3. Realize the simplified function using available logic elements.



4.1 CONVERSION OF ENGLISH SENTENCES
TO BOOLEAN EQUATIONS

• For simple problems, it may be possible to go directly from a word description of the 

desired behaviour of the circuit to an algebraic expression for the output function. 

• In other cases, it is better to first specify the function by means of a truth table and 

then derive an algebraic expression from the truth table.

• Logic design problems are often stated in terms of one or more English sentences.

• The first step in designing a logic circuit is to translate these sentences into Boolean 

equations. 

• In order to do this, we must break down each sentence into phrases and associate a 

Boolean variable with each phrase. If a phrase can have a value of true or false, then 

we can represent that phrase by a Boolean variable.



4.1 CONVERSION OF ENGLISH SENTENCES
TO BOOLEAN EQUATIONS

• Phrases such as “she goes to the store” or “today is Monday” can be either 

true or false, but a command like “go to the store” has no truth value. 

• If a sentence has several phrases, we will mark each phrase with a brace.The

following sentence has three phrases:

• The “if” and “and” are not included in any phrase; they show the relationships 

among the phrases.



4.1 CONVERSION OF ENGLISH SENTENCES
TO BOOLEAN EQUATIONS

We will define a two-valued variable to indicate the truth or falsity of 

each phrase:

Because F is “true” if A and B are both “true”, we can represent the sentence 

by F = A . B



4.1 CONVERSION OF ENGLISH SENTENCES
TO BOOLEAN EQUATIONS

• We will use the following assignment of variables:

Using this assignment of variables, the above sentence can be translated 

into the following Boolean equation: Z = AB’ + CD’



4.3 MINTERM AND MAXTERM EXPANSIONS

• Each of the terms in equation (4-1) is referred to as a minterm. 

• In general, a minterm of n variables is a product of n literals in 

which each variable appears exactly once in either true or 

complemented form, but not both. (A literal is a variable or its 

complement.)



4.3 MINTERM AND MAXTERM EXPANSIONS

• Table 4-1 lists all of the minterms of the three variables A, B, and C. 

• Each minterm has a value of 1 for exactly one combination of values of 

the variables A, B, and C. 

• The minterm which corresponds to row i of the truth table is designated 

mi (i is usually written in decimal).



4.3 MINTERM AND MAXTERM EXPANSIONS

• When a function f is written as a sum of minterms as in Equation (4-

1), this is referred to as a minterm expansion or a standard sum of 

products.

• Equation (4-1) can be rewritten in terms of m-notation as

This can be further abbreviated by listing only the decimal subscripts 

in the form



4.3 MINTERM AND MAXTERM EXPANSIONS

• Each of the sum terms (or factors) in Equation (4-3) is referred to 

as a maxterm.

• In general, a maxterm of n variables is a sum of n literals in 

which each variable appears exactly once in either true or 

complemented form, but not both.



4.3 MINTERM AND MAXTERM EXPANSIONS

• Maxterms are often written in abbreviated form using M-notation.

• The maxterm which corresponds to row i of the truth table is 

designated Mi. 

• Note that each maxterm is the complement of the corresponding 

minterm, that is, Mi = m’i.



4.3 MINTERM AND MAXTERM EXPANSIONS

• Equation (4-3) can be rewritten in M-notation as



4.3 MINTERM AND MAXTERM EXPANSIONS



4.3 MINTERM AND MAXTERM EXPANSIONS





4.3 MINTERM AND MAXTERM EXPANSIONS



4.7 DESIGN OF BINARY ADDERS AND SUBTRACTERS

• We will design a parallel adder that adds two 4-bit unsigned binary 

numbers and a carry input to give a 4-bit sum and a carry output (see figure 

4-2).

• One approach would be to construct a truth table with nine inputs and five 

outputs and then derive and simplify the five output equations. 

• Because each equation would be a function of nine variables before 

simplification, this approach would very difficult, and the resulting logic circuit 

would be very complex.



4.7 DESIGN OF BINARY ADDERS AND SUBTRACTERS

• A better method is to design a logic module that adds two bits and a carry, and 

then connect four of modules together to form a 4-bit adder as shown in figure 

4-3.

• Each of the modules is called a full adder. 

• The carry output from the first full adder serves as the carry input to the second 

full adder, etc.







4.7 DESIGN OF BINARY ADDERS AND SUBTRACTERS

•NOTE

• If the number of bits is large, a parallel binary adder of the type 

shown in Figure 4-4 may be rather slow because the carry 

generated in the first cell might have to propagate all of the way 

to the last cell. 

• Other types of adders, such as a carry-look ahead adder, 2 may 

be used to speed up the carry propagation.



4.7 DESIGN OF BINARY ADDERS AND SUBTRACTERS

• Subtraction of binary numbers is most easily accomplished by adding the 

complement of the number to be subtracted. To compute A - B, add the 

complement of B to A. 

• This gives the correct answer because A + (-B)  = A - B. 

• Either 1’s or 2’s complement is used depending on the type of adder employed.



4.7 DESIGN OF BINARY ADDERS AND SUBTRACTERS

• The circuit of Figure 4-6 may be used to form A - B using the 2’s complement 

representation for negative numbers. 

• The 2’s complement of B can be formed by first finding the 1’s complement 

and then adding 1. 

• The 1’s complement is formed by inverting each bit of B, and the addition of 1 

is effectively accomplished by putting a 1 into the carry input of the first full 

adder.
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