LECTURE 5
APPLICATIONS OF BOOLEAN ALGEBRA MINTERM AND MAXTERM

EXPANSIONS

OBJECTIVES

1. Given a word description of the desired behavior of a logic circuit, write the output of the circuit as a function of the input variables. Specify this function as an algebraic expression or by means of a truth table, as is appropriate.
2. Given a truth table, write the function (or its complement) as both a minterm expansion (standard sum of products) and a maxterm expansion (standard product of sums). Be able to use both alphabetic and decimal notation.
3. Given an algebraic expression for a function, expand it algebraically to obtain the minterm or maxterm form.

OBJECTIVES

4. Given one of the following: minterm expansion for F, minterm expansion for F, maxterm expansion for F , or maxterm expansion for F , find any of the other three forms.
5. Write the general form of the minterm and maxterm expansion of a function of n variables.
6. Explain why some functions contain don't-care terms.
7. Explain the operation of a full adder and a full subtracter and derive logic equations for these modules. Draw a block diagram for a parallel adder or subtracter and trace signals on the block diagram.

- In this unit you will learn how to design a combinational logic circuit Starting with a word description of the desired circuit behaviour.
- The first step is usually to translate the word description into a truth table or into an algebraic expression.
- Given the truth table for a boolean function, two standard algebraic forms of the function can be derived-the standard sum of products (minterm expansion) and the standard product of sums (maxterm expansion).
- Simplification of either of these standard forms leads directly to a realization of the circuit using AND and OR gates.

4.1 CONVERSION OF ENGLISH SENTENCES TO BOOLEAN EQUATIONS

- The three main steps in designing a single-output combinational switching circuit are

1. Find a switching function that specifies the desired behaviour of the circuit.
2. Find a simplified algebraic expression for the function.
3. Realize the simplified function using available logic elements.

4.9 CONVERSION OF ENGLISH SENTENCES TO BOOLEAN EQUATIONS

- For simple problems, it may be possible to go directly from a word description of the desired behaviour of the circuit to an algebraic expression for the output function.
- In other cases, it is better to first specify the function by means of a truth table and then derive an algebraic expression from the truth table.
- Logic design problems are often stated in terms of one or more English sentences.
- The first step in designing a logic circuit is to translate these sentences into Boolean equations.
- In order to do this, we must break down each sentence into phrases and associate a Boolean variable with each phrase. If a phrase can have a value of true or false, then we can represent that phrase by a Boolean variable.

4.9 CONVERSION OF ENGLISH SENTENCES TO BOOLEAN EQUATIONS

- Phrases such as "she goes to the store" or "today is Monday" can be either true or false, but a command like "go to the store" has no truth value.
- If a sentence has several phrases, we will mark each phrase with a brace.The following sentence has three phrases:
Mary watches TV if it is Monday night and she has finished her homework.
- The "if" and "and" are not included in any phrase; they show the relationships among the phrases.

4.9 CONVERSION OF ENGLISH SENTENCES TO BOOLEAN EQUATIONS

We will define a two-valued variable to indicate the truth or falsity of each phrase:
$F=1$ if "Mary watches TV" is true; otherwise, $F=0$.
$A=1$ if "it is Monday night" is true; otherwise, $A=0$.
$B=1$ if "she has finished her homework" is true; otherwise $B=0$.
Because F is "true" if A and B are both "true", we can represent the sentence by $\mathrm{F}=\mathrm{A} . \mathrm{B}$

4.9 CONVERSION OF ENGLISH SENTENCES TO BOOLEAN EQUATIONS

- We will use the following assignment of variables:

Using this assignment of variables, the above sentence can be translated into the following Boolean equation: $Z=A B^{\prime}+C D '$

4.3 MINTERM AND MAXTERM EXPANSIONS

- Each of the terms in equation (4-1) is referred to as a minterm.
- In general, a minterm of n variables is a product of n literals in which each variable appears exactly once in either true or complemented form, but not both. (A literal is a variable or its complement.)
$f=A^{\prime} B C+A B^{\prime} C^{\prime}+A B^{\prime} C+A B C^{\prime}+A B C$

4.3MINTERM AND MAXTERM EXPANSIONS

- Table 4-1 lists all of the minterms of the three variables A, B, and C.
- Each minterm has a value of 1 for exactly one combination of values of the variables A, B, and C.
- The minterm which corresponds to row i of the truth table is designated mi (i is usually written in decimal).

TABLE 4-1	Row No.	$A \quad B \quad C$	Minterms	Maxterms		
	Minterms and	0	0	0	0	$A^{\prime} B^{\prime} C^{\prime}=m_{0}$
Maxterms for	1	0	0	1	$A^{\prime} B^{\prime} C=m_{1}+C$	$A+B+C^{\prime}=M_{1}$
Three Variables	2	0	1	0	$A^{\prime} B C^{\prime}=m_{2}$	$A+B^{\prime}+C=M_{2}$
	3	0	1	1	$A^{\prime} B C=m_{3}$	$A+B^{\prime}+C^{\prime}=M_{3}$
	4	1	0	0	$A B^{\prime} C^{\prime}=m_{4}$	$A^{\prime}+B+C=M_{4}$
	5	1	0	1	$A B^{\prime} C=m_{5}$	$A^{\prime}+B+C^{\prime}=M_{5}$
	6	1	1	0	$A B C^{\prime}=m_{6}$	$A^{\prime}+B^{\prime}+C=M_{6}$
	7	1	1	1	$A B C$	$=m_{7}$
$A^{\prime}+B^{\prime}+C^{\prime}=M_{7}$						

4.3 MINTERM AND MAXTERM EXPANSIONS

- When a function f is written as a sum of minterms as in Equation (41), this is referred to as a minterm expansion or a standard sum of products.
- Equation (4-1) can be rewritten in terms of m-notation as

$$
\begin{equation*}
f(A, B, C)=m_{3}+m_{4}+m_{5}+m_{6}+m_{7} \tag{4-5}
\end{equation*}
$$

This can be further abbreviated by listing only the decimal subscripts in the form

$$
\begin{equation*}
f(A, B, C)=\Sigma m(3,4,5,6,7) \tag{4-5a}
\end{equation*}
$$

4.3 MINTERM AND MAXTERM EXPANSIONS

- Each of the sum terms (or factors) in Equation (4-3) is referred to as a maxterm.
- In general, a maxterm of n variables is a sum of n literals in which each variable appears exactly once in either true or complemented form, but not both.

$$
\begin{equation*}
f=(A+B+C)\left(A+B+C^{\prime}\right)\left(A+B^{\prime}+C\right) \tag{4-3}
\end{equation*}
$$

4.3 MINTERM AND MAXTERM EXPANSIONS

- Maxterms are often written in abbreviated form using M-notation.
- The maxterm which corresponds to row i of the truth table is designated M_{i}.
- Note that each maxterm is the complement of the corresponding minterm, that is, $\mathrm{M}_{\mathrm{i}}=\mathrm{m}_{\mathrm{i}}{ }^{\prime}$.

4.3 MINTERM AND MAXTERM EXPANSIONS

- Equation (4-3) can be rewritten in M-notation as

$$
\begin{equation*}
f(A, B, C)=M_{0} M_{1} M_{2} \tag{4-6}
\end{equation*}
$$

This can be further abbreviated by listing only the decimal subscripts in the form

$$
f(A, B, C)=\Pi M(0,1,2)
$$

where II means a product.

4.3 MINTERM AND MAXTERM EXPANSIONS

Given the minterm or maxterm expansions for f, the minterm or maxterm expansions for the complement of are easy to obtain. Because f^{\prime} 's 1 when fis 0 , the minterm expansion for $f^{\prime \prime}$ contains those minterms not present in f. Thus, from Equation (4.5),

$$
f^{\prime}=m_{0}+m_{1}+m_{2}=\sum m(0,1,2)
$$

4.3 MINTERM AND MAXTERM EXPANSIONS

Similarly, the maxterm expansion for f^{\prime} contains those maxterms not present in f. From Equation (4-6),

$$
\begin{equation*}
f^{\prime}=\Pi M(3,4,5,6,7)=M_{3} M_{4} M_{5} M_{6} M_{7} \tag{4-8}
\end{equation*}
$$

Because the complement of a minterm is the corresponding maxterm, Equation $(4-8)$ can be obtained by complementing Equation (4-5):

$$
f^{\prime}=\left(m_{3}+m_{4}+m_{5}+m_{6}+m_{7}\right)^{\prime}=m_{3}^{\prime} m_{4}^{\prime} m_{5}^{\prime} m_{6}^{\prime} m_{7}^{\prime}=M_{3} M_{4} M_{5} M_{6} M_{7}
$$

Similarly, Equation (4-7) can be obtained by complementing Equation (4-6):

$$
f^{\prime}=\left(M_{0} M_{1} M_{2}\right)^{\prime}=M_{0}^{\prime}+M_{1}^{\prime}+M_{2}^{\prime}=m_{0}+m_{1}+m_{2}
$$

Example

Find the minterm expansion of $f(a, b, c, d)=a^{\prime}\left(b^{\prime}+d\right)+a c d^{\prime}$.

$$
\begin{align*}
f= & a^{\prime} b^{\prime}+a^{\prime} d+a c d^{\prime} \\
= & a^{\prime} b^{\prime}\left(c+c^{\prime}\right)\left(d+d^{\prime}\right)+a^{\prime} d\left(b+b^{\prime}\right)\left(c+c^{\prime}\right)+a c d^{\prime}\left(b+b^{\prime}\right) \\
= & a^{\prime} b^{\prime} c^{\prime} d^{\prime}+a^{\prime} b^{\prime} c^{\prime} d+a^{\prime} b^{\prime} c d^{\prime}+a^{\prime} b^{\prime} c d+a^{\prime} b^{\prime} c^{\prime} d+a^{\prime} b^{\prime} c d \\
& +a^{\prime} b c^{\prime} d+a^{\prime} b c d+a b c d^{\prime}+a b^{\prime} c d^{\prime} \tag{4-9}
\end{align*}
$$

Duplicate terms have been crossed out, because $X+X=X$. This expression can then be converted to decimal notation:

$$
\begin{align*}
& f=a^{\prime} b^{\prime} c^{\prime} d^{\prime}+a^{\prime} b^{\prime} c^{\prime} d+a^{\prime} b^{\prime} c d^{\prime}+a^{\prime} b^{\prime} c d+a^{\prime} b c^{\prime} d+a^{\prime} b c d+a b c d^{\prime}+a b^{\prime} c d^{\prime} \\
& \\
& \tag{4-10}\\
& 0000
\end{align*} 0001 \quad 0010 \quad 0011 \quad 0101 \quad 0111 \quad 1110 \quad 1010
$$

4.3 MINTERM AND MAXTERM EXPANSIONS

The maxterm expansion for f can then be obtained by listing the decimal integers (in the range 0 to 15) which do not correspond to minterms of f :

$$
f=\Pi M(4,6,8,9,11,12,13,15)
$$

4.7 DESIGN OF BINARY ADDERS AND SUBTRACTERS

- We will design a parallel adder that adds two 4-bit unsigned binary numbers and a carry input to give a 4-bit sum and a carry output (see figure 4-2).
- One approach would be to construct a truth table with nine inputs and five outputs and then derive and simplify the five output equations.
- Because each equation would be a function of nine variables before simplification, this approach would very difficult, and the resulting logic circuit would be very complex.

4.7 DESIGN OF BINARY ADDERS AND SUBTRACTERS

- A better method is to design a logic module that adds two bits and a carry, and then connect four of modules together to form a 4-bit adder as shown in figure 4-3.
- Each of the modules is called a full adder.
- The carry output from the first full adder serves as the carry input to the second full adder, etc.

FIGURE 4-2
Parallel Adder for 4-Bit Binary Numbers

FIGURE 4-3
Parallel Adder Composed of Four Full Adders

In the example of Figure $4-3$, we perform the following addition:
10110 (carries) 1011

$$
\text { + } 1011
$$

$$
10110
$$

The full adder to the far right adds $A_{0}+B_{0}+C_{0}=1+1+0$ to give a sum of 10_{2}, which gives a sum $S_{0}=0$ and a carry out of $C_{1}=1$. The next full adder adds $A_{1}+B_{1}+C_{1}=1+1+1=11_{2}$, which gives a sum $S_{1}=1$ and a carry $C_{2}=1$. The carry continues to propagate from right to left until the left cell produces a final carry of $C_{4}=1$.

4.7 DESIGN OF BINARY ADDERS AND SUBTRACTERS

- NOTE

- If the number of bits is large, a parallel binary adder of the type shown in Figure 4-4 may be rather slow because the carry generated in the first cell might have to propagate all of the way to the last cell.
- Other types of adders, such as a carry-look ahead adder, 2 may be used to speed up the carry propagation.
- Subtraction of binary numbers is most easily accomplished by adding the complement of the number to be subtracted. To compute A-B, add the complement of B to A.
- This gives the correct answer because $\mathrm{A}+(-\mathrm{B})=\mathrm{A}-\mathrm{B}$.
- Either 1's or 2's complement is used depending on the type of adder employed.
- The circuit of Figure 4-6 may be used to form A - B using the 2's complement representation for negative numbers.
- The 2 's complement of B can be formed by first finding the 1 's complement and then adding 1 .
- The 1 's complement is formed by inverting each bit of B, and the addition of 1 is effectively accomplished by putting a 1 into the carry input of the first full adder.

FIGURE 4.6
Binary Subtracter Using Full Adders
using the 2 's complement
$\begin{array}{ll}A=0110 & (+6) \\ B=0011 & (+3)\end{array}$
The adder output is

$$
\begin{aligned}
0110 & (+6) \\
+1100 & \text { (1's complement of 3) } \\
+\quad 1 & \text { (first carry input) }
\end{aligned}
$$

$$
\text { (1) } 0011=3=6-3
$$

