GRAPHICS

ContourPlot Contour plot3D **ListContourPlot DensityPlot DensityPlot3D VectorPlot** VectorPlot3D **ParametricPlot** ParametricPlot3D SphericalPlot3D **SphericalHarmonicY**

ContourPlot

ContourPlot creates contours of an expression involving two variables. The contours are the curves on which the expression is constant. The contours are drawn on a rectangle. Ranges for each variable in the expression can be given.

ContourPlot

ContourPlot[f, {x, x_{min} , x_{max} }, {y, y_{min} , y_{max} }] generates a contour plot of f as a function of x and y.

ContourPlot[$f == g, \{x, x_{min}, x_{max}\}, \{y, y_{min}, y_{max}\}$] plots contour lines for which f = g.

ContourPlot[$\{f_1 == g_1, f_2 == g_2, ...\}, \{x, x_{min}, x_{max}\}, \{y, y_{min}, y_{max}\}$] plots several contour lines.

ContourPlot[..., $\{x, y\} \in reg$] takes the variables $\{x, y\}$ to be in the geometric region reg.

in[1]= ContourPlot[Cos[x] + Cos[y], {x, 0, 4 Pi}, {y, 0, 4 Pi}]

Plot an equation:

 $ln[1] = ContourPlot[Cos[x] + Cos[y] = 1/2, \{x, 0, 4Pi\}, \{y, 0, 4Pi\}]$

Plot several equations:

 $ln[1] = ContourPlot[{Abs[Sin[x] Sin[y]] = 0.5, Abs[Cos[x] Cos[y]] = 0.5}, {x, -3, 3}, {y, -3, 3}]$

Show a legend for the contours:

 $ln[1]= ContourPlot[Cos[x] + Cos[y], \{x, 0, 4Pi\}, \{y, 0, 4Pi\}, PlotLegends \rightarrow Automatic]$

Simple shapes, including a line:

 $ln[1] = ContourPlot[2x + 3y = 1, \{x, -2, 2\}, \{y, -2, 2\}]$

Circle:

 $\ln[2]:= ContourPlot[x^2 + y^2 = 1, \{x, -1, 1\}, \{y, -1, 1\}]$

Ellipse:

 $\ln[3] = ContourPlot[x^2 + (2y)^2 = 1, \{x, -1, 1\}, \{y, -1, 1\}]$

Parabola:

 $ln[4] = ContourPlot[x^2 = y, \{x, -2, 2\}, \{y, -2, 2\}]$

ContourPlot3D

ContourPlot3D[f, {x, x_{min}, x_{max}}, {y, y_{min}, y_{max}}, {z, z_{min}, z_{max}}] produces a three-dimensional contour plot of f as a function of x, y, and z.

ContourPlot3D[$f == g, \{x, x_{min}, x_{max}\}, \{y, y_{min}, y_{max}\}, \{z, z_{min}, z_{max}\}$] plots the contour surface for which f = g.

- The contour surfaces plotted by ContourPlot3D can contain disconnected parts.
- By default, ContourPlot3D shows each contour level as an opaque white surface, with normals pointing outward.

Plot a 3D contour surface:

 $ln[1] = ContourPlot3D[x^3 + y^2 - z^2 == 0, \{x, -2, 2\}, \{y, -2, 2\}, \{z, -2, 2\}]$

 $ln[1] = ContourPlot3D[x^3 + y^2 - z^2, \{x, -2, 2\}, \{y, -2, 2\}, \{z, -2, 2\}]$

in[1]= Table[ContourPlot3D[Evaluate[e], {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Mesh → None, AxesLabel → Automatic, Ticks → None, PlotLabel → e],

{e, { $(x/2)^2 + y^2 + z^2 = 1$, $x^2 + (y/2)^2 + z^2 = 1$, $x^2 + y^2 + (z/2)^2 = 1$ }]

ListContourPlot

ListContourPlot[array] generates a contour plot from an array of height values.

```
ListContourPlot[{{x1, y1, f1}, {x2, y2, f2}, ...}]
generates a contour plot from values defined at specified points.
```

```
in[1]= data = Table[Sin[xy], {x, 0, 3, .1}, {y, 0, 3, .1}];
```

```
In[2]:= ListContourPlot[data]
```


ListContourPlot[Table[Sin[xy], {x, 0, 3, .1}, {y, 0, 3, .1}]]

DensityPlot

This has the syntax similar to that of the ContourPlot[], but it has different options. For an expression involving two variables,

this produces a shading of chosen rectangle.

DensityPlot

DensityPlot[f, {x, x_{min}, x_{max}}, {y, y_{min}, y_{max}}] makes a density plot of f as a function of x and y.

DensityPlot[f, $\{x, y\} \in reg$] takes the variables $\{x, y\}$ to be in the geometric region reg. DensityPlot[x^3+y^2, {x, -3, 3}, {y, -3, 3}]

DensityPlot[x^3 + y^2, {x, -3, 3}, {y, -3, 3}, Mesh \rightarrow Full]

DensityPlot3D

DensityPlot3D[f, {x, x_{min} , x_{max} }, {y, y_{min} , y_{max} }, {z, z_{min} , z_{max} }] makes a density plot of f as a function of x, y, and z.

DensityPlot3D[f, {x, y, z} \in reg] takes the variables to be in the geometric region reg.

- DensityPlot3D by default generates colorized output.
- At positions where f does not evaluate to a real number, data is taken to be missing and is rendered transparently.
- DensityPlot3D treats the variables x, y, and z as local, effectively using Block.
- DensityPlot3D has attribute HoldAll, and evaluates f only after assigning specific numerical values to x, y, and z.

DensityPlot3D[x y z, {x, -1, 1}, {y, -1, 1}, {z, -1, 1}]

DensityPlot3D[Sin[x] Cos[y] Sin[z], {x, y, z} ∈ Ball[{0, 0, 0}, 5], PlotTheme → "Marketing"]

VectorPlot

VectorPlot[{ v_x , v_y }, {x, x_{min} , x_{max} }, {y, y_{min} , y_{max} }] generates a vector plot of the vector field { v_x , v_y } as a function of x and y.

```
VectorPlot[{\{v_x, v_y\}, \{w_x, w_y\}, ...\}, \{x, x_{min}, x_{max}\}, \{y, y_{min}, y_{max}\}]
plots several vector fields.
```

VectorPlot[..., $\{x, y\} \in reg$] takes the variables $\{x, y\}$ to be in the geometric region reg.

- VectorPlot by default shows vectors from the vector field at a regular grid of positions.
- VectorPlot omits any vectors for which the v_i etc. do not evaluate to real numbers.
- VectorPlot treats the variables x and y as local, effectively using Block.

Table[{x, y}, {x, -3, 3}, {y, -3, 3}]; MatrixForm[%]

strixForm=

(1-3)	(-3)	(-3)	(-3)	(-3)	(-3)	(-3)
-3	(-2)	-1	0	11	2	3
(-2)	(-2)	(-2)	(-2)	(-2)	1-2)	(-2)
-3	-2	-1	0	1	2	3
(-1)	(-1)	(-1)	(-1)	(-1)	(-1)	(-1)
(-3)	-2	(-1)	0	1)	2	3/
101	10)	(0)	(0)	(0)	(0)	101
(-3)	-2	-1	0	1)	2	3
(1)	(1)	(1)	(1)	(1)	(1)	(1)
(-3)	-2	-1/	0	1)	2	3
12	(2)	(2)	(2)	(2)	(2)	(2)
-3	-2	-1)	0	(1)	2	(3)
(3)	131	(3)	(3)	(3)	(3)	(3)
-3/	-2	-1	0	1	2	3

VectorPlot[{-x, y}, {x, -3, 3}, {y, -3, 3}]

Table[{-x, y}, {x, -3, 3}, {y, -3, 3}]; MatrixForm[%]

trixForm=						
(3)	13)	(3)	(3)	(3)	(3)	(3)
-3	-2	-1	0	1)	2	3
(2)	12)	(2)	12)	(2)	(2)	(2)
(-3)	-2	(-1)	0	1)	2	3)
(1)	(1)	(1)	(1)	(1)	(1)	(1)
(-3)	-2	-1	0	1)	2	3
101	101	101	101	(0)	101	101
(-3)	-2	(-1)	0	1)	2	3/
(-1)	(-1)	(-1)	(-1)	(-1)	(-1)	(-1)
(-3)	-2	-1/	0	1)	2	3
(-2)	(-2)	(-2)	(-2)	(-2)	(-2)	(-2)
-3	(-2)	(-1)	0	11/	2	3
(-3)	(-3)	(-3)	(-3)	(-3)	(-3)	(-3)
(-3)	-2	-1	0	1)	2	3

VectorPlot[{x, -y}, {x, -3, 3}, {y, -3, 3}]

-3 $\begin{pmatrix} -3 \\ 1 \end{pmatrix} \begin{pmatrix} -3 \\ 0 \end{pmatrix} \begin{pmatrix} -3 \\ -1 \end{pmatrix}$ (-3 -2) $\begin{pmatrix} -3 \\ -3 \end{pmatrix}$ -2 -2 -2 -2 1 -2 -2 1-2 -3 -1 -1 -1 -1 -1 -1 -1 -3 -1 - 3 -3 -1

-3

VectorPlot3D

VectorPlot3D[{ v_x , v_y , v_z }, {x, x_{min} , x_{max} }, {y, y_{min} , y_{max} }, {z, z_{min} , z_{max} }] generates a 3D vector plot of the vector field { v_x , v_y , v_z } as a function of x, y, and z.

VectorPlot3D[{field1, field2, ...}, {x, x_{min}, x_{max}}, {y, y_{min}, y_{max}}, {z, z_{min}, z_{max}}]
plots several vector fields.

Plot a vector field:

in[1]= VectorPlot3D[{x, y, z}, {x, -1, 1}, {y, -1, 1}, {z, -1, 1}]

ParametricPlot

ParametricPlot[] draws the curve formed by a pair of expression

 $\{x[t], y[t]\}$ as the parameter t varies.

ParametricPlot[$\{f_x, f_y\}, \{u, u_{min}, u_{max}\}$]

generates a parametric plot of a curve with x and y coordinates f_x and f_y as a function of u.

ParametricPlot[{{ f_x , f_y }, { g_x , g_y }, ...}, {u, u_{min} , u_{max} }] plots several parametric curves.

ParametricPlot[{f_x, f_y}, {u, u_{min}, u_{max}}, {v, v_{min}, v_{max}}]
plots a parametric region.

ParametricPlot[{{f_x, f_y}, {g_x, g_y}, ...}, {u, u_{min}, u_{max}}, {v, v_{min}, v_{max}}] plots several parametric regions.

ParametricPlot[..., $\{u, v\} \in reg$] takes parameters $\{u, v\}$ to be in the geometric region reg. In[1]:= ParametricPlot[{Sin[u], Sin[2u]}, {u, 0, 2Pi}]

Plot a parametric region:

```
In[1]= ParametricPlot[r^2 { Sqrt[t] Cos[t], Sin[t] }, {t, 0, 3Pi/2}, {r, 1, 2}]
```


Plot several parametric curves with a legend:

```
In[1]= ParametricPlot[{{2Cos[t], 2Sin[t]}, {2Cos[t], Sin[t]}, {Cos[t], 2Sin[t]}, {Cos[t], Sin[t]},
        {t, 0, 2Pi}, PlotLegends → "Expressions"]
```


In[58]:= ParametricPlot[{Exp[-t/20] Cos[t], Exp[-t/20] Sin[t]}, {t, 0, 50}]

Simple parametric curves including a line:

in[1]= ParametricPlot[{3u+4, u+2}, {u, 0, 1}]

Circle:

28

Ellipse:

In[3]:= ParametricPlot[{2 Cos[u], Sin[u]}, {u, 0, 2 Pi}]

Circle segment:

In[4]= ParametricPlot[{Cos[u], Sin[u]}, {u, Pi/4, 5Pi/4}]

Simple parametric regions including a rectangle:

```
in[1]:= ParametricPlot[{u, v}, {u, 1, 3}, {v, 3, 4}]
```


Disk:

In[2]:= ParametricPlot[{v Cos[u], v Sin[u]}, {u, 0, 2 Pi}, {v, 0, 1}]

Ellipse:

In[3]:= ParametricPlot[{2 v Cos[u], v Sin[u]}, {u, 0, 2 Pi}, {v, 0, 1}]

Disk segment:

In[4]:= ParametricPlot[{v Cos[u], v Sin[u]}, {u, 0, Pi/3}, {v, 0, 1}]

ParametricPlot3D

This plots a parametrically defined three-dimensional curve (or a parametrically defined three-dimensional surface). It is part of the collection of Graphics packages, which must be loaded explicitly before it can be used,

ParametricPlot3D[$\{f_x, f_y, f_z\}, \{u, u_{min}, u_{max}\}$]

produces a three-dimensional space curve parametrized by a variable u which runs from umin to umax.

ParametricPlot3D[{ f_x , f_y , f_z }, {u, u_{min} , u_{max} }, {v, v_{min} , v_{max} }] produces a three-dimensional surface parametrized by u and v.

ParametricPlot3D[{{ f_x, f_y, f_z }, { g_x, g_y, g_z }...}..] plots several objects together.

ParametricPlot3D[..., $\{u, v\} \in reg$]

takes parameters {u, v} to be in the geometric region reg.

Themes that affect 3D surfaces include:

AN	"DarkMesh"	dark mesh lines
	"GrayMesh"	gray mesh lines
	"LightMesh"	light mesh lines
	"ZMesh"	vertical mesh lines
~	"ThickSurface"	add thickness to surfaces

Plot a parametric surface:

```
ln[1]:= ParametricPlot3D[[Cos[u], Sin[u] + Cos[v], Sin[v]], \{u, 0, 2\pi\}, \{v, -\pi, \pi\}]
```


Plot a parametric space curve:

in[1]= ParametricPlot3D[{Sin[u], Cos[u], u / 10}, {u, 0, 20}]

Plot multiple parametric surfaces:

Cylinder:

In[3]:= ParametricPlot3D[{Cos[u], Sin[u], 2v}, {u, 0, 2Pi}, {v, 0, 1}, Mesh → 5, BoundaryStyle → Black, PlotStyle → FaceForm[Red, Yellow]]

Cone:

in[4]= ParametricPlot3D[{v Cos[u], v Sin[u], 2 v}, {u, 0, 2 Pi}, {v, 0, 1}, Mesh → 5, BoundaryStyle → Black, PlotStyle → FaceForm[Red, Yellow]]

Use ParametricPlot for curves and regions in two dimensions:

In[1]:= {ParametricPlot[{u Cos[u], u Sin[u]}, {u, 0, 4 Pi}], ParametricPlot[{(u+v) Cos[u], (u+v) Sin[u]}, {u, 0, 4 Pi}, {v, 0, 3}]}

SphericalPlot3D

SphericalPlot3D[r, θ , ϕ] generates a 3D plot with a spherical radius r as a function of spherical coordinates θ and ϕ .

SphericalPlot3D[r, { θ , θ_{min} , θ_{max} }, { ϕ , ϕ_{min} , ϕ_{max} }] generates a 3D spherical plot over the specified ranges of spherical coordinates.

SphericalPlot3D[$\{r_1, r_2, ...\}, \{\theta, \theta_{min}, \theta_{max}\}, \{\phi, \phi_{min}, \phi_{max}\}$] generates a 3D spherical plot with multiple surfaces.

- The angles θ and ϕ are measured in radians.
- = $\pi/2 \theta$ corresponds to "latitude"; θ is 0 at the "north pole", and π at the "south pole".
- φ corresponds to "longitude", varying from 0 to 2 π counterclockwise looking from the north pole.
- SphericalPlot3D[r, θ, ϕ] takes θ to have range 0 to π , and ϕ to have range 0 to 2π .
- The x, y, z position corresponding to r, θ, φ is r sin(θ) cos(φ), r sin(θ) sin(φ), r cos(θ). The variables θ and φ can have any values. The surfaces they define can overlap radially.

Plot a spherical surface:

In[1]= SphericalPlot3D[1+2Cos[20], {0, 0, Pi}, {0, 0, 2Pi}]

Plot a sphere:

In[1]= SphericalPlot3D[1, {0, 0, Pi}, {0, 0, 2Pi}]

A spiraling shell:

in[1]= SphericalPlot3D[\$, {0, 0, Pi}, {\$, 0, 3Pi}]

SphericalHarmonicY

SphericalHarmonicY[1, m, θ, ϕ] gives the spherical harmonic $Y_1^m(\theta, \phi)$.

- Mathematical function, suitable for both symbolic and numerical manipulation.
- The spherical harmonics are orthonormal with respect to integration over the surface of the unit sphere.
- = For $l \ge 0$, $Y_{l}^{m}(\theta, \phi) = \sqrt{(2l+1)/(4\pi)} \sqrt{(l-m)!/(l+m)!} P_{l}^{m}(\cos(\theta)) e^{im\phi}$ where P_{l}^{m} is the associated Legendre function.
- For $l \leq -1$, $Y_{l}^{m}(\theta, \phi) = Y_{-(l+1)}^{m}(\theta, \phi)$. $\ln[1] = SphericalHarmonicY[3, 1, <math>\vartheta$, ϕ]

Out[1]=
$$-\frac{1}{8}e^{i\phi}\sqrt{\frac{21}{\pi}}\left(-1+5\cos[\theta]^2\right)\sin[\theta]$$

in[1]= SphericalHarmonicY[n, m, 0, d] // TraditionalForm

Out[1]//TraditionalForm=

$$Y^{m}_{n}(\theta,\phi)$$

SphericalPlot3D[Abs[SphericalHarmonicY[3, 1, theta, phi]], {theta, 0, Pi}, {phi, 0, 2 Pi}]

SphericalPlot3D[Abs[SphericalHarmonicY[5, 1, theta, phi]], {theta, 0, Pi}, {phi, 0, 2 Pi}]

