2-Bicyclic monoterpenes :

a-6+3 group

Carane group : e.g. Carone $C_{10}H_{16}O$

It behaves as a ketone ,that it can be condensed with hydrazine and hydroxyl amine to give the hydrazone and oxime derivative respectively . It is a satutated compound since it did not react with bromine. The parent hydrocarbon has M.F. C_nH_{2n-2} , called ,carane , it is bicyclic

The following reactions to indicate position of the carbonyl group, the presence of three membered ring and six membered ring.

b) 6+4 group, Pinane group :

There are three isomers for pinenes, , α -pinene , β -pinene and δ -pinene

Bredt's rule:

States that a double bond cannot be formed by a carbon atom occupying the bridge-head (of a bicyclic system).

 α -pinene $C_{10}H_{16}$

This compound reacted with one molecule of hydrogen and one molecule of bromine ,thus, α -pinene contains one double bond .

Since M.F. of pinane is $C_{10}H_{18}$, = C_nH_{2n-2} thus, α -pinene is *bicyclic* This compound contains six membered ring, since it can be converted into α -terpineol, position of the double bond in α -pinene as in α terpineol.

Degradative oxidation for the six membered ring(to indicate the presence of the four membered ring), the two compounds have the same carbon skeleton); i.e. α -pinene has the same carbon skeleton of α -terpineol and thus, α -pinene contains a six membered ring and ring opening occurs at C-6.

The second ring is a four membered ring by degradative oxidation of the six membered ring

Formation of norpinic acid(2,2-dimethylcyclobutane-1,3-dicarboxylic acid),(its parent hydrocarbon has $M.F.C_nH_{2n}$; *monocyclic* indicates that cyclobutane ring is present.

c)Camphane group : Camphor $C_{10}H_{16}O$

Obtained from camphor laurel trees in china and japan It behaves as a ketone ,that it can be condensed with hydrazine and hydroxyl amine to give the hydrazone and oxime derivative respectively . It is a satutated compound since it did not react with bromine . Position of the carbonyl group at C-2 from this reaction

carvacrol

It is a bicyclic compound from the following reactions

This compound contains six membered ring,

It is a ketone not an aldehyde ,also contains five membered ring as follows :

Since camphoric acid is a dicarboxylic acid and has the same number of carbons as camphor , camphoric acid is a monocyclic compound ,has the M.F.C₁₀H₁₆O₄ and its parent hydrocarbon is a saturated hydrocarbon by neglecting two carboxylic groups and three methyl groups ,the parent hydrocarbon of camphoric acid is has the M.F.C₅H₁₀ equivalent to C_nH_{2n} . It is a monocyclic and a cyclopentane ring and this is confirmed by synthesis of camphor.