
Theory	of	Computation

Lecture	7:	Context-free	grammars

Outline
• Context	Free	Grammars
• Languages	generated	by	CFGs
• Ambiguity
• Chomsky	Normal	Form

1

From	Sipser Chapter	2.1	

Overview

• So	far	we	introduced	two	equivalent	methods
for	describing	regular	languages:	Finite
Automata	and	Regular	Expressions

• In	the	next	part	we	something	analogous:
–We	introduce	context	free	grammars	(CFGs)	which
describe	context	free	languages (CFLs)

–We	introduce	push-down	automata	(PDA)	which
recognize	CFGs

–We	even	have	another	pumping	lemma!

2

Context	Free	Grammars

• They	were	first	used	to	study	human
languages

• They	are	used	for	“real”	computer	languages
(C,	C++,	etc.)
– They	define	“rules”	of	the	language
– A	parser	uses	the	grammar	to	parse	the	input

3

A	CFG	example
• Here	is	an	example	grammar	G1

A	à 0A1
A	à B
B	à #

• A	grammar	has	substitution	rules	or	productions
– Each	rule	is	stated	as	a	variable (usually	capitalized)	a	right

pointing	arrow	and	a	sequence	of	variables	and	terminal
symbols	(usually	non	capitalized)

– Here	A	and	B	are	the	variables	and	the	terminals	are	0,	1,	#
– One	variable	is	designated	as	the	start	variable

• Usually	on	the	left-hand	side	of	topmost	rule
• In	this	example	A	is	the	start	variable

4

Generating	a	language	from	a	CFG
We	use	a	CFG	to	generate	the	strings	of	a	language	
by	replacing	variables	using	the	rules	in	the	
grammar:
– Start	from	the	start	variable
– Apply	productions	until	only	terminal	symbols	are
left

– This	process	can	also	be	represented	as	a	parse	tree
– This	process	referred	as	derivation of	a	string

• Give	me	some	strings	that	grammar	G1
generates?

5

Example	of	derivation

A=> 0A1=>	00A11=>000A111=>000B111=>000#111

6

yields yields yields yields yields

A=>*000#111	means	“A	derives 000#111”

The	Language	of	Grammar	G1

• The	set	of	all	strings	generated	by	G1	is	the
language	of	G1
– Denoted	as	L(G1)

• We	say	that	a	language	associated	with	a	CFG
is	a	context	free	language	(CFL)

• What	is	the	language	of	G1?
– L(G1)	=	{0n#1n|	n	≥0}
– This	should	look	familiar.	Can	we	generate	this
with	a	FA?	Why?

7

Formal	Definition	of	a	CFG

A	CFG	is	a	4-tuple	(V,	S,	R,	S)	where
1. V	is	a	finite	set	called	the	variables
2. S is	a	finite	set,	disjoint	from	V,	called	the

terminals
3. R	is	a	finite	set	of	rules	(or	productions),	with

each	rule	being	a	variable	and	a	string	of
variables	and	terminals

4. S	Î V	is	the	start	variable

8

Example
Grammar	G3	=	({S},	{a,b},	R,	S),	where:

S	® aSb |	SS	|	ε
– Short	form	for

Sà aSb
Sà SS
S	à ε

–What	does	this	generate?
• abab,	aaabbb,	aababb
• If	you	view	a	as	“(“	and	b	as	“)”	then	you	get	all	strings
of	properly	nested	parentheses

9

Example
Grammar	G3	=	({S},	{a,b},	R,	S),	where:

S	® aSb |	SS	|	ε
– Derivation	for	“aababb”

• S	® aSb® aSSb® aaSbSb® aabSb® aabaSbb® aababb

10

Example	2.4	Page	103	(2nd ed)

11

Designing	CFGs
• Some	creativity	is	required!
• Guidelines:
– If	the	CFL	is	the	union	of	simpler	CFLs,	design
grammars	for	the	simpler	ones	and	then	combine
• For	example,	S	® G1	|	G2	|	G3

– If	the	language	is	regular,	then	can	design	a	CFG	that
imitates	a	DFA
• Make	a	variable	Ri for	every	state	qi
• If	δ(qi,	a)	=	qj,	then	add	Ri®aRj
• Add	Ri® ε if	qi is	an	accept	state
• Make	R0 the	start	variable	where	q0 is	the	start	state	of	the	DFA

This	implies	that	CFGs	subsume	regular	languages

12

Designing	CFGs	using	unbounded	
space

Certain	CFLs	contain	strings	that	are	linked	in	
the	sense	that	a	machine	for	recognizing	this	
language	would	need	to	remember	an	
unbounded	amount	of	information	about	one	
substring	to	“verify”	the	other	substring.
– Sometimes	trivial	with	a	CFG
– Example:	0n1n
• S	® 0S1	|	ε

13

Certain	CFGs	allow	to		generate	the	same	string	in	
multiple	ways
• E.g.:	EXPR	® EXPR	+	EXPR		|	EXPR	× EXPR	|(EXPR)	|	a

• EXPRàEXPR+EXPRà EXPR+	EXPR	× EXPR	à a+a×a
• EXPRàEXPR×EXPRà EXPR+	EXPR	× EXPR	à a+a×a

– The	two	derivations	have	different	parse	trees

–We	say	that	a+a×a is	generated	ambiguously
• A	CFG	which	generates	a	string	ambiguously	is	ambiguous

Ambiguity

14

Ambiguity	and	ordering
A	grammar	generates	a	string	ambiguously	if	
there	are	two	different	parse	trees	for	the	string	
derivation:
– Two	derivations	may	differ	in	the	order	that	the
rules	are	applied,	but	if	they	generate	the	same
parse	tree,	it	is	not	really	ambiguous

• This	notion	of	ambiguity	corresponds	to
“linguistic	notion”
– “The	girl	touches	the	boy	with	a	flower”
– 2	possible	meanings	à 2	possible	ways	of
“parsing	the	sentence”	à ambiguity

15

Leftmost	derivations	and	Ambiguity
• A	derivation	is	a	leftmost	derivation	if	at	every
step	the	leftmost	remaining	variable	is
replaced
– Are	these	leftmost	derivations?

• EXPRàEXPR+EXPRà EXPR+	EXPR	× EXPR	à a+a×a
• EXPRàEXPR×EXPRà EXPR+	EXPR	× EXPR	à a+a×a

• A	string	w is	derived	ambiguously in	a	CFG	G	if
it	has	two	or	more	different	leftmost
derivations.

16

Chomsky	Normal	Form

• In	general	we	want	to	avoid	ambiguity	in	CFGs
• A	CFG	is	in	Chomsky	normal	form	if	every	rule
is	of	the	form:

A	® BC
A	® a

Where	a	is	any	terminal	and	A,	B,	and	C	are	any	
variables–except	B	and	C	may	not	be	the	start	
variable.	The	start	variable	can	also	go	to	ε

• Any	CFL	can	be	generated	by	a	CFG	in
Chomsky	normal	form

17

Converting	CFG	to	Chomsky	Normal	Form
Proof	by	construction:	in	a	series	of	steps	we	replace	rules	
that	violate	the	definition	with	equivalent	satisfactory	ones

1. Add	rule	 S0® S,	where	S	was	original	start	variable
2. Remove	ε-rules.	Remove	A	® ε and	for	each	occurrence	of	A	add	a

new	rule	with	A	deleted.
E.g.:	If	we	have	R	® uAvAw,	we	get:	R	® uvAw |	uAvw |	uvw

3. Handle	all	unit	rules
E.g.:	If	we	had	A	® B,	then	whenever	a	rule	B	® u	exists,	we	add	A	® u.

4. Replace	rules	A	® u1u2u3…	uk with:
A	® u1A1;		A1® u2A2;		A2® u3A3 ;	…;		Ak-2® uk-1uk

Application	of	these	rules	may	require	multiple	passes!

18

