
Theory	of	Computation

Lecture	7:	Context-free	grammars



Outline
• Context	Free	Grammars
• Languages	generated	by	CFGs
• Ambiguity
• Chomsky	Normal	Form
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From	Sipser Chapter	2.1	



Overview

• So	far	we	introduced	two	equivalent	methods
for	describing	regular	languages:	Finite
Automata	and	Regular	Expressions

• In	the	next	part	we	something	analogous:
–We	introduce	context	free	grammars	(CFGs)	which
describe	context	free	languages (CFLs)

–We	introduce	push-down	automata	(PDA)	which
recognize	CFGs

–We	even	have	another	pumping	lemma!
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Context	Free	Grammars

• They	were	first	used	to	study	human
languages

• They	are	used	for	“real”	computer	languages
(C,	C++,	etc.)
– They	define	“rules”	of	the	language
– A	parser	uses	the	grammar	to	parse	the	input
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A	CFG	example
• Here	is	an	example	grammar	G1

A	à 0A1
A	à B
B	à #

• A	grammar	has	substitution	rules	or	productions
– Each	rule	is	stated	as	a	variable (usually	capitalized)	a	right

pointing	arrow	and	a	sequence	of	variables	and	terminal
symbols	(usually	non	capitalized)

– Here	A	and	B	are	the	variables	and	the	terminals	are	0,	1,	#
– One	variable	is	designated	as	the	start	variable

• Usually	on	the	left-hand	side	of	topmost	rule
• In	this	example	A	is	the	start	variable
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Generating	a	language	from	a	CFG
We	use	a	CFG	to	generate	the	strings	of	a	language	
by	replacing	variables	using	the	rules	in	the	
grammar:
– Start	from	the	start	variable
– Apply	productions	until	only	terminal	symbols	are
left

– This	process	can	also	be	represented	as	a	parse	tree
– This	process	referred	as	derivation of	a	string

• Give	me	some	strings	that	grammar	G1
generates?
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Example	of	derivation

A=> 0A1=>	00A11=>000A111=>000B111=>000#111
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yields yields yields yields yields

A=>*000#111	means	“A	derives 000#111”



The	Language	of	Grammar	G1

• The	set	of	all	strings	generated	by	G1	is	the
language	of	G1
– Denoted	as	L(G1)

• We	say	that	a	language	associated	with	a	CFG
is	a	context	free	language	(CFL)

• What	is	the	language	of	G1?
– L(G1)	=	{0n#1n|	n	≥0}
– This	should	look	familiar.	Can	we	generate	this
with	a	FA?	Why?
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Formal	Definition	of	a	CFG

A	CFG	is	a	4-tuple	(V,	S,	R,	S)	where
1. V	is	a	finite	set	called	the	variables
2. S is	a	finite	set,	disjoint	from	V,	called	the

terminals
3. R	is	a	finite	set	of	rules	(or	productions),	with

each	rule	being	a	variable	and	a	string	of
variables	and	terminals

4. S	Î V	is	the	start	variable
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Example
Grammar	G3	=	({S},	{a,b},	R,	S),	where:

S	® aSb |	SS	|	ε
– Short	form	for

Sà aSb
Sà SS
S	à ε

–What	does	this	generate?
• abab,	aaabbb,	aababb
• If	you	view	a	as	“(“	and	b	as	“)”	then	you	get	all	strings
of	properly	nested	parentheses
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Example
Grammar	G3	=	({S},	{a,b},	R,	S),	where:

S	® aSb |	SS	|	ε
– Derivation	for	“aababb”

• S	® aSb® aSSb® aaSbSb® aabSb® aabaSbb® aababb
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Example	2.4	Page	103	(2nd ed)
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Designing	CFGs
• Some	creativity	is	required!
• Guidelines:
– If	the	CFL	is	the	union	of	simpler	CFLs,	design
grammars	for	the	simpler	ones	and	then	combine
• For	example,	S	® G1	|	G2	|	G3

– If	the	language	is	regular,	then	can	design	a	CFG	that
imitates	a	DFA
• Make	a	variable	Ri for	every	state	qi
• If	δ(qi,	a)	=	qj,	then	add	Ri®aRj
• Add	Ri® ε if	qi is	an	accept	state
• Make	R0 the	start	variable	where	q0 is	the	start	state	of	the	DFA

This	implies	that	CFGs	subsume	regular	languages
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Designing	CFGs	using	unbounded	
space

Certain	CFLs	contain	strings	that	are	linked	in	
the	sense	that	a	machine	for	recognizing	this	
language	would	need	to	remember	an	
unbounded	amount	of	information	about	one	
substring	to	“verify”	the	other	substring.
– Sometimes	trivial	with	a	CFG
– Example:	0n1n
• S	® 0S1	|	ε

13



Certain	CFGs	allow	to		generate	the	same	string	in	
multiple	ways
• E.g.:	EXPR	® EXPR	+	EXPR		|	EXPR	× EXPR	|(EXPR)	|	a

• EXPRàEXPR+EXPRà EXPR+	EXPR	× EXPR	à a+a×a
• EXPRàEXPR×EXPRà EXPR+	EXPR	× EXPR	à a+a×a

– The	two	derivations	have	different	parse	trees

–We	say	that	a+a×a is	generated	ambiguously
• A	CFG	which	generates	a	string	ambiguously	is	ambiguous

Ambiguity
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Ambiguity	and	ordering
A	grammar	generates	a	string	ambiguously	if	
there	are	two	different	parse	trees	for	the	string	
derivation:
– Two	derivations	may	differ	in	the	order	that	the
rules	are	applied,	but	if	they	generate	the	same
parse	tree,	it	is	not	really	ambiguous

• This	notion	of	ambiguity	corresponds	to
“linguistic	notion”
– “The	girl	touches	the	boy	with	a	flower”
– 2	possible	meanings	à 2	possible	ways	of
“parsing	the	sentence”	à ambiguity
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Leftmost	derivations	and	Ambiguity
• A	derivation	is	a	leftmost	derivation	if	at	every
step	the	leftmost	remaining	variable	is
replaced
– Are	these	leftmost	derivations?

• EXPRàEXPR+EXPRà EXPR+	EXPR	× EXPR	à a+a×a
• EXPRàEXPR×EXPRà EXPR+	EXPR	× EXPR	à a+a×a

• A	string	w is	derived	ambiguously in	a	CFG	G	if
it	has	two	or	more	different	leftmost
derivations.
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Chomsky	Normal	Form

• In	general	we	want	to	avoid	ambiguity	in	CFGs
• A	CFG	is	in	Chomsky	normal	form	if	every	rule
is	of	the	form:

A	® BC
A	® a

Where	a	is	any	terminal	and	A,	B,	and	C	are	any	
variables–except	B	and	C	may	not	be	the	start	
variable.	The	start	variable	can	also	go	to	ε

• Any	CFL	can	be	generated	by	a	CFG	in
Chomsky	normal	form
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Converting	CFG	to	Chomsky	Normal	Form
Proof	by	construction:	in	a	series	of	steps	we	replace	rules	
that	violate	the	definition	with	equivalent	satisfactory	ones

1. Add	rule	 S0® S,	where	S	was	original	start	variable
2. Remove	ε-rules.	Remove	A	® ε and	for	each	occurrence	of	A	add	a

new	rule	with	A	deleted.
E.g.:	If	we	have	R	® uAvAw,	we	get:	R	® uvAw |	uAvw |	uvw

3. Handle	all	unit	rules
E.g.:	If	we	had	A	® B,	then	whenever	a	rule	B	® u	exists,	we	add	A	® u.

4. Replace	rules	A	® u1u2u3…	uk with:
A	® u1A1;		A1® u2A2;		A2® u3A3 ;	…;		Ak-2® uk-1uk

Application	of	these	rules	may	require	multiple	passes!
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