Theory of Computation

Lecture 7: Context-free grammars

* Context Free Grammars

* Languages generated by CFGs
 Ambiguity

* Chomsky Normal Form

From Sipser Chapter 2.1

- Overview

* So far we introduced two equivalent methods
for describing regular languages: Finite
Automata and Regular Expressions

* |n the next part we something analogous:

— We introduce context free grammars (CFGs) which
describe context free languages (CFLs)

— We introduce push-down automata (PDA) which
recognize CFGs

— We even have another pumping lemmal

Context Free Grammars

* They were first used to study human
languages

* They are used for “real” computer languages
(C, C++, etc.)
— They define “rules” of the language
— A parser uses the grammar to parse the input

- A CFG example

* Hereisan example grammar G1

A - 0A1l
A->B
B> #

* A grammar has substitution rules or productions

— Eachrule is stated as a variable (usually capitalized) a right
pointing arrow and a sequence of variables and terminal
symbols (usually non capitalized)

— Here A and B are the variables and the terminals are 0, 1, #

— One variable is designated as the start variable
e Usually on the left-hand side of topmost rule
* Inthis example A is the start variable

Generating a language from a CFG

We use a CFG to generate the strings of a language
by replacing variables using the rules in the
grammar:

— Start from the start variable

— Apply productions until only terminal symbols are
left

— This process can also be represented as a parse tree
— This process referred as derivation of a string

* Give me some strings that grammar G1
generates?

-nple of derivation

A= >OA1 >OOA11 >OOOA111 >OOOBlll >OOO#111

ylelds ylelds ylelds A y|eIds y|elds
4
A
)1
|
O O O

A=>*000#111 means ”A derlves 000#111”

-he Language of Grammar G1

* The set of all strings generated by G1 is the
language of G1
— Denoted as L(G1)

* We say that a language associated with a CFG
is a context free language (CFL)
 What is the language of G17?
— L(G1) = {0"#1"| n =0}
— This should look familiar. Can we generate this
with a FA? Why?

Formal Definition of a CFG

A CFG is a 4-tuple (V, Z, R, S) where
1. Vs afinite set called the variables

2. X2 is a finite set, disjoint from V, called the
terminals

3. Ris afinite set of rules (or productions), with
each rule being a variable and a string of
variables and terminals

4. S e Vis the start variable

- Example

Grammar G3 = ({S}, {a,b}, R, S), where:

S—>aSb |SS | e
— Short form for
S—> aSb
S—=> SS
S—2>¢

— What does this generate?

* abab, aaabbb, aababb

* If you view a as “(“ and b as “)” then you get all strings
of properly nested parentheses

Grammar G3 = ({S}, {a,b}, R, S), where:

S—>aSb |SS | e

— Derivation for “aababb”
e S— aSb — aSSb — aaSbSb — aabSb — aabaSbb — aababb

10

Consider grammar G4 = (V, X, R, (EXPR)).
V is {(EXPR), (TERM), (FACTOR)} and X is {a, +, x, (,) }. The rules are

(EXPR) — (EXPR)+(TERM) | (TERM)
(TERM) — (TERM)X(FACTOR) | (FACTOR)
(FACTOR) — ((EXPR)) | a

The two strings a+axa and (a+a) xa can be generated with grammar Gjy.

The parse trees are shown in the following figure.

(FACTOR)

(TERM)

|

(FACI\DR) \

(FACTOR)

(a + a) x a

11

- Designing CFGs

* Some creativity is required!
e Guidelines:

— If the CFL is the union of simpler CFLs, design
grammars for the simpler ones and then combine
* For example,S —> G1 | G2 | G3

— If the language is regular, then can design a CFG that
imitates a DFA
* Make a variable R, for every state q;
If 6(q;, a) = q;, then add R; —aR,
Add R. — € if g, is an accept state
Make R, the start variable where q is the start state of the DFA

12

pesigning Lras using unpounaed
space

Certain CFLs contain strings that are linked in
the sense that a machine for recognizing this
language would need to remember an
unbounded amount of information about one
substring to “verify” the other substring.

— Sometimes trivial with a CFG
— Example: O"1"
«S—>0S1]¢

- Ambiguity

Certain CFGs allow to generate the same string in
multiple ways

* E.g.: EXPR — EXPR + EXPR | EXPR X EXPR |(EXPR) | a

* EXPR->EXPR+EXPR-> EXPR+ EXPR X EXPR - a+a X a
 EXPR>EXPR X EXPR-> EXPR+ EXPR X EXPR = a+a Xa

— The two derivations have different parse trees

EXPR FXPR

FXPR EXPR EXPR EXPR
}:XPR EXPR EXPR LXPR

— We say that a+a X a IS generated amblguously
* A CFG which generates a string ambiguously is ambiguous

.
14

Ambiguity and ordering

A grammar generates a string ambiguously if
there are two different parse trees for the string
derivation:

— Two derivations may differ in the order that the
rules are applied, but if they generate the same
parse tree, it is not really ambiguous

* This notion of ambiguity corresponds to
“linguistic notion”
— “The girl touches the boy with a flower”

— 2 possible meanings =2 2 possible ways of
“parsing the sentence” =2 ambiguity

-nost derivations and Ambiguity

* A derivation is a leftmost derivation if at every
step the leftmost remaining variable is
replaced

— Are these leftmost derivations?

« EXPROEXPR+EXPR-> EXPR+ EXPR X EXPR > a+a X I
+ EXPREXPR X EXPR-> EXPR+ EXPR X EXPR > a+a Xy’

 Astring wis derived ambiguously in a CFG G if
it has two or more different leftmost
derivations.

16

Chomsky Normal Form

* |n general we want to avoid ambiguity in CFGs

e ACFG isin Chomsky normal form if every rule

is of the form:

A — BC
A— a

Where a is any terminal and A, B, and C are any
variables—except B and C may not be the start
variable. The start variable can also go to €

* Any CFL can be generated by a CFG in
Chomsky normal form

- CFG to Chomsky Normal Form

Proof by construction: in a series of steps we replace rules
that violate the definition with equivalent satisfactory ones
1. Addrule S;— S, where S was original start variable

2. Remove e-rules. Remove A — € and for each occurrence of A add a
new rule with A deleted.

E.g.: If we have R — uAvAw, we get: R — uvAw | uAvw | uvw
3. Handle all unit rules
E.g.: If we had A — B, then whenever a rule B — u exists, we add A — u.

4. Replace rules A = u,u,us... u, with:
A—uA; Al— WA, A, — UA;; . AL = Uy

Aiilication of these rules mai reﬂuire muItiEIe iasses!

18

