# **Theory of Computation**

#### Lecture 7: Context-free grammars

## Outline

- Context Free Grammars
- Languages generated by CFGs
- Ambiguity
- Chomsky Normal Form

#### From Sipser Chapter 2.1

## **Overview**

- So far we introduced two equivalent methods for describing regular languages: Finite Automata and Regular Expressions
- In the next part we something analogous:
  - We introduce context free grammars (CFGs) which describe context free languages (CFLs)
  - We introduce push-down automata (PDA) which recognize CFGs
  - We even have another pumping lemma!

#### **Context Free Grammars**

- They were first used to study human languages
- They are used for "real" computer languages (C, C++, etc.)
  - They define "rules" of the language
  - A parser uses the grammar to parse the input

## A CFG example

- Here is an example grammar G1
  - $\mathsf{A} \not \to \mathsf{OA1}$
  - $\mathsf{A} \xrightarrow{} \mathsf{B}$
  - $B \rightarrow #$
- A grammar has substitution rules or productions
  - Each rule is stated as a variable (usually capitalized) a right pointing arrow and a sequence of variables and terminal symbols (usually non capitalized)
  - Here A and B are the variables and the terminals are 0, 1, #
  - One variable is designated as the start variable
    - Usually on the left-hand side of topmost rule
    - In this example A is the start variable

# Generating a language from a CFG

We use a CFG to generate the strings of a language by replacing variables using the rules in the grammar:

- Start from the start variable
- Apply productions until only terminal symbols are left
- This process can also be represented as a parse tree
- This process referred as derivation of a string
- Give me some strings that grammar G1 generates?

#### **Example of derivation**



A=>\*000#111 means "A derives 000#111"

# The Language of Grammar G1

 The set of all strings generated by G1 is the language of G1

– Denoted as L(G1)

- We say that a language associated with a CFG is a context free language (CFL)
- What is the language of G1?

 $-L(G1) = \{0^n \# 1^n | n \ge 0\}$ 

– This should look familiar. Can we generate this with a FA? Why?

## Formal Definition of a CFG

#### A CFG is a 4-tuple (V, $\Sigma$ , R, S) where

- 1. V is a finite set called the variables
- 2.  $\Sigma$  is a finite set, disjoint from V, called the terminals
- R is a finite set of rules (or productions), with each rule being a variable and a string of variables and terminals
- 4.  $S \in V$  is the start variable

## Example

#### Grammar G3 = ({S}, {a,b}, R, S), where:

- $S \rightarrow aSb ~|~ SS ~|~ \epsilon$
- Short form for
  - $S \rightarrow aSb$
  - $s \rightarrow ss$
  - $S \rightarrow \epsilon$
- What does this generate?
  - abab, aaabbb, aababb
  - If you view a as "(" and b as ")" then you get all strings of properly nested parentheses

#### Example

#### Grammar G3 = ({S}, {a,b}, R, S), where:

- $S \rightarrow aSb ~|~ SS ~|~ \epsilon$
- Derivation for "aababb"
  - S  $\rightarrow$  aSb  $\rightarrow$  aSSb  $\rightarrow$  aaSbSb  $\rightarrow$  aabSb  $\rightarrow$  aabaSbb  $\rightarrow$  aababb

## Example 2.4 Page 103 (2<sup>nd</sup> ed)

Consider grammar  $G_4 = (V, \Sigma, R, \langle EXPR \rangle)$ . V is { $\langle EXPR \rangle, \langle TERM \rangle, \langle FACTOR \rangle$ } and  $\Sigma$  is {a, +, x, (, )}. The rules are  $\langle EXPR \rangle \rightarrow \langle EXPR \rangle + \langle TERM \rangle | \langle TERM \rangle$  $\langle TERM \rangle \rightarrow \langle TERM \rangle \times \langle FACTOR \rangle | \langle FACTOR \rangle$ 

 $\langle \mathrm{FACTOR} 
angle 
ightarrow$  (  $\langle \mathrm{EXPR} 
angle$  )  $\mid$  a

The two strings a+axa and (a+a)xa can be generated with grammar  $G_4$ . The parse trees are shown in the following figure.



# **Designing CFGs**

- Some creativity is required!
- Guidelines:
  - If the CFL is the union of simpler CFLs, design grammars for the simpler ones and then combine
    - For example, S  $\rightarrow$  G1 | G2 | G3
  - If the language is regular, then can design a CFG that imitates a DFA
    - Make a variable R<sub>i</sub> for every state q<sub>i</sub>
    - If  $\delta(q_i, a) = q_i$ , then add  $R_i \rightarrow aR_j$
    - Add  $R_i \rightarrow \epsilon$  if  $q_i$  is an accept state
    - Make  $R_0$  the start variable where  $q_0$  is the start state of the DFA

#### This implies that CFGs subsume regular languages

# Designing CFGs using unbounded space

Certain CFLs contain strings that are linked in the sense that a machine for recognizing this language would need to remember an unbounded amount of information about one substring to "verify" the other substring.

- Sometimes trivial with a CFG
- Example: 0<sup>n</sup>1<sup>n</sup>
  - S  $\rightarrow$  OS1 |  $\epsilon$

# Ambiguity

Certain CFGs allow to generate the same string in multiple ways

- E.g.: EXPR  $\rightarrow$  EXPR + EXPR | EXPR  $\times$  EXPR |(EXPR) | a
  - EXPR $\rightarrow$ EXPR+EXPR $\rightarrow$ EXPR+EXPR  $\times$ EXPR $\rightarrow$ a+a  $\times$ a
  - EXPR $\rightarrow$ EXPR × EXPR $\rightarrow$  EXPR+ EXPR × EXPR $\rightarrow$  a+a × a
  - The two derivations have different parse trees



• A CFG which generates a string ambiguously is ambiguous

# **Ambiguity and ordering**

A grammar generates a string ambiguously if there are two different parse trees for the string derivation:

- Two derivations may differ in the order that the rules are applied, but if they generate the same parse tree, it is not really ambiguous
- This notion of ambiguity corresponds to "linguistic notion"
  - "The girl touches the boy with a flower"
  - 2 possible meanings  $\rightarrow$  2 possible ways of "parsing the sentence"  $\rightarrow$  ambiguity

# Leftmost derivations and Ambiguity

- A derivation is a leftmost derivation if at every step the leftmost remaining variable is replaced
  - Are these leftmost derivations?
    - EXPR $\rightarrow$ EXPR+EXPR $\rightarrow$  EXPR+ EXPR  $\times$  EXPR  $\rightarrow$  a+a  $\times$
    - EXPR $\rightarrow$  EXPR × EXPR $\rightarrow$  EXPR+ EXPR × EXPR $\rightarrow$  a+a ×
- A string w is derived ambiguously in a CFG G if it has two or more different leftmost derivations.

# **Chomsky Normal Form**

- In general we want to avoid ambiguity in CFGs
- A CFG is in Chomsky normal form if every rule is of the form:

 $\mathsf{A} \to \mathsf{BC}$ 

 $\mathsf{A} \to \mathsf{a}$ 

Where a is any terminal and A, B, and C are any variables–except B and C may not be the start variable. The start variable can also go to ε

 Any CFL can be generated by a CFG in Chomsky normal form

## **Converting CFG to Chomsky Normal Form**

Proof by construction: in a series of steps we replace rules that violate the definition with equivalent satisfactory ones

- 1. Add rule  $S_0 \rightarrow S$ , where S was original start variable
- 2. Remove  $\varepsilon$ -rules. Remove A  $\rightarrow \varepsilon$  and for each occurrence of A add a new rule with A deleted.

E.g.: If we have  $R \rightarrow uAvAw$ , we get:  $R \rightarrow uvAw \mid uAvw \mid uvw$ 

- 3. Handle all unit rules E.g.: If we had  $A \rightarrow B$ , then whenever a rule  $B \rightarrow u$  exists, we add  $A \rightarrow u$ .
- 4. Replace rules  $A \rightarrow u_1 u_2 u_3 ... u_k$  with:

 $A \rightarrow u_1A_1; \ A_1 \rightarrow \ u_2A_2; \ A_2 \rightarrow \ u_3A_3 \ ; ...; \ A_{k\text{-}2} \rightarrow \ u_{k\text{-}1}u_k$ 

#### Application of these rules may require multiple passes!