
Theory	of	Computation	

Lecture	8:	Pushdown	Automata



Outline
• Pushdown	automata
• Formal	Definition
• The	language	of	a	PDA
• Constructing	a	PDA
• Equivalence	of	PDAs	and	CFGs

1

From	Sipser Chapter	2.2



Pushdown	Automata	(PDA)
• Similar	to	NFAs	but	have	an	extra	component	called	a
stack
– The	stack	provides	extra	memory	that	is	separate
from	the	control

• Allows	PDA	to	recognize	non-regular	languages
• Equivalent	in	power/expressiveness	to	a	CFG
• Some	languages	easily	described	by	generators
others	by	recognizers

• Nondeterministic	PDA’s	not equivalent	to
deterministic	ones	but	NPDA	=	CFG

2



Components	of	a	FA

• The	state	control	represents	the	states	and
transition	function

• Tape contains	the	input	string
• Arrow	represents	the	input	head	and	points	to
the	next	symbol	to	be	read	from	the	tape

State
control a a b b

Theory	of	Computation	- Fall'19	
Lorenzo	De	Stefani			 3



Components	of	a	PDA

The	PDA	adds	a	stack
– Stack	acts	like	a	local
memory

– Can	write	to	the	stack	and
read	them	back	later

– A	stack	is	a	LIFO	(Last	In
First	Out)	and	size	is	not
bounded

– Write	to	the	top	(push)	and
rest	“push	down”	or

– Can	remove	(read)	from
the	top	(pop)	and	other
symbols	move	up

State
control a a b b

x
y

z stack

Theory	of	Computation	- Fall'19	
Lorenzo	De	Stefani			 4



PDA	and	Language	0n1n

Can	a	PDA	recognize	the	language	0n1n?
– Yes,	because	size	of	stack	is	not	bounded
– Describe	the	PDA	that	recognizes	this	language
• Read	symbols	from	input.	Push	each	0	onto	the	stack.
• As	soon	as	a	1’s	are	seen,	starting	popping	one	0	for	each
1
• If	finish	reading	the	input	and	have	no	0’s	on	stack,	then
accept	the	input	string
• If	stack	is	empty	and	1s	remain	or	if	stack	becomes	empty
and	still	1’s	in	string,	reject
• If	at	any	time	see	a	0	after	seeing	a	1,	then	reject

Theory	of	Computation	- Fall'19	
Lorenzo	De	Stefani			 5



Definition	of	a	PDA

Similar	to	that	of	a	FA	but	now	we	have	a	stack
– Stack	alphabet	may	be	different	from	input
alphabet
• Stack	alphabet	represented	by	Γ

– Transition	function	must	include	the	stack
• Domain	of	transition	function	is	Q	× S ε× Γ ε

– The	current	state,	next	input	symbol	and	top	stack	symbol
determine	the	next	move

• Image	of	transition	function	is	Q	× Γ ε
– The	next	state	and	the	next	symbol	on	top	of	the	stack

[
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

[
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

[
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Theory	of	Computation	- Fall'19	
Lorenzo	De	Stefani			 6



Formal	Definition	of	PDA
A	pushdown	automata	is	a	6-tuple	(Q,	S,	Γ,	δ,	q0,	
F),	where	Q,	S,	Γ,	and	F	are	finite	sets

1. Q	is	the	set	of	states
2. S is	the	input	alphabet
3. Γ is	the	stack	alphabet
4. δ	:	Q	× Sε× Γε® P(Q	× Γε)	is	transition	function
5. q0 Î Q	is	the	start	state,	and
6. F	Í Q	is	the	set	of	accept	states

– Note	that	at	any	step	the	PDA	may	enter	a	new
state	and	possibly	write	a	symbol	on	top	of	the
stack
• This	definition	allows	for	nondeterminism since	δ can

return	a	set

Theory	of	Computation	- Fall'19	
Lorenzo	De	Stefani			 7



Strings	recognized	by	PDAs
The	following	3	conditions	must	be	satisfied	for	a	
string	to	be	accepted:

1. M	must	start	in	the	start	state	with	an	empty	stack
2. M	must	move	according	to	the	transition	function
3. At	the	end	of	the	input,	M	must	be	in	an	accept

state
– To	make	it	easy	to	test	for	an	empty	stack,	a	$	is

initially	pushed	onto	the	stack

Theory	of	Computation	- Fall'19	
Lorenzo	De	Stefani			 8



Notation

We	write	transitions	as	a,b® c	to	mean:
– When	the	machine	is	reads“a”	from	the	input	and
“b”	is	on	the	top	of	the	stack,	“b”	is	replaced	with	“c”

– Any	of	a,	b,	or	c	can	be	ε!
• If	a	is	ε then	can	make	stack	change	without	reading	an
input	symbol
• If	b	is	ε then	no	need	to	pop	a	symbol	(just	push	c)
• If	c	is	ε then	no	new	symbol	is	written	(just	pop	b)

Theory	of	Computation	- Fall'19	
Lorenzo	De	Stefani			 9



PDA	for	0n1n

Formally	describe	PDA	that	accepts	{0n1n|n	≥0}
Let	M1	be	(Q,	S,	Γ,	δ,	q0,	F),	where

Q	=	{q1,	q2,	q3,	q4}								S =	{0,	1}
Γ =	{0,	$} F	=	{q1,	q4}

0, ε® 0

1, 0 ® ε

ε, ε® $

ε, $ ® ε

q1

q4

q2

q3

1, 0 ® ε

Theory	of	Computation	- Fall'19	
Lorenzo	De	Stefani			 10



Example	:	PDA	for	aibjck,	i=j	or	i=k

Design	a	PDA	that	recognizes	the	language	
{aibjck|	i,	j,	k	≥0	and	i=j	or	i=k}
– Think	of	an	informal	description
– Can	we	do	it	without	using	non-determinism?
• No

–With	non-determinism?
• Similar	to	0n1n	except	that	we	need	to	guess	non-
deterministically	whether	to	match	a’s	with	b’s	or	c’s

Theory	of	Computation	- Fall'19	
Lorenzo	De	Stefani			 11



Example	:	PDA	for	aibjck,	i=j	or	i=k

Theory	of	Computation	- Fall'19	
Lorenzo	De	Stefani			 12



Example	2:	PDA	for	{wwR}
Design	a	PDA	for	the	language	{wwR|	w	Î {0,1}*	}
– wR is	the	reverse	of	w	so	this	is	the	language	of
palindromes

– Can	you	informally	describe	the	PDA?
– Can	you	come	up	with	a	non-deterministic	one?
• Yes,	push	symbols	that	are	read	onto	the	stack	and	at
some	point	nondeterministically guess	that	you	are	in	the
middle	of	the	string	and	then	pop	off	stack	value	as	they
match	the	input	(if	no	match,	then	reject)

Theory	of	Computation	- Fall'19	
Lorenzo	De	Stefani			 13



PDA	for	{wwR}

0, ε® 0
1, ε® 1

0, 0 ® ε
1, 1 ® ε

ε, ε® $

ε, $ ® ε

q1

q4

q2

q3

ε, ε® ε

Theory	of	Computation	- Fall'19	
Lorenzo	De	Stefani			 14



Equivalence	of	PDAs	and	CFGs

– First	direction	:	if	a	language	L	is	context	free	then	some	PDA	recognizes	it
Proof	idea:	We	show	how	to	take	a	CFG	that	generates	L	and	convert	it
into	an	equivalent	PDA	P
• Thus	P	accepts	a	string	only	if	the	CFG	can	derive	it
• Each	main	step	of	the	PDA	involves	an	application	of	one	rule	in	the	CFG
• The	stack	contains	the	intermediate	strings	generated	by	the	CFG
• Since	the	CFG	may	have	a	choice	of	rules	to	apply,	the	PDA	must	use	its	non-
determinism

• One	issue:	since	the	PDA	can	only	access	the	top	of	the	stack,	any	terminal
symbols	pushed	onto	the	top	of	the	stack	must	be	checked	against	the	input
string	immediately.
– If	the	terminal	symbol	matches	the	next	input	character,	then	advance	input	string
– If	the	terminal	symbol	does	not	match,	then	terminate	that	path

Theorem:	A	language	is	context	free	if	and	only	if	some	
pushdown	automaton	recognizes	it

Theory	of	Computation	- Fall'19	
Lorenzo	De	Stefani			 15



Informal	Description	of	P	
• Place	marker	symbol	$	and	the	start	variable	on	the
stack

• Repeat	forever
– If	the	top	of	the	stack	is	a	variable	A,	nondeterministically
select	one	of	the	rules	for	A	and	substitute	A	by	the	string
on	the	right-hand	side	of	the	rule

– If	the	top	of	stack	is	a	terminal	symbol	a,	read	the	next
symbol	from	the	input	and	compare	it	to	a.	If	they	match,
repeat.	If	they	do	not	match,	reject	this	branch.

– If	the	top	of	stack	is	the	symbol	$,	enter	the	accept	state.
Doing	so	accepts	the	input	if	it	has	all	been	read.

Theory	of	Computation	- Fall'19	
Lorenzo	De	Stefani			 16



Example	2.25:	construct	a	PDA	P1	from	a	CFG	G

Theory	of	Computation	- Fall'19	
Lorenzo	De	Stefani			 17



Example

• Note	that	the	top	path	in	qloop	branches	to	the	right	and
replaces	S	with	aTb
– It	first	pushes	b,	then	T,	then	a	(a	is	then	at	top	of	stack)

• Note	the	path	below	that	replaces	T	with	Ta
– It	replaces	T	with	a	then	pops	T	on	top	of	that

• Your	task:
– Show	how	this	PDA	accepts	the	string	aab,	which	has	the
following	derivation:
• S	® aTb	® aTab	® aab

Theory	of	Computation	- Fall'19	
Lorenzo	De	Stefani			 18



Example	continued

• In	the	following,	the	left	is	the	top	of	stack
–We	start	with	S$
• We	take	the	top	branch	to	the	right	and	we	get	the
following	as	we	go	thru	each	state:
– S$	® b$	® Tb$	® aTb$

• We	read	a	and	use	rule	a,a® ε to	pop	it	to	get	Tb$
• We	next	take	the	2nd branch	going	to	right:

– Tb$	® ab$	® Tab$
• We	next	use	rule	ε,T	® ε to	pop	T	to	get	ab$
• Then	we	pop	a	then	pop	b	at	which	point	we	have	$
• Everything	read	so	accept

Theory	of	Computation	- Fall'19	
Lorenzo	De	Stefani			 19



Relationship	of	Regular	Languages	&	CFLs

• We	know	that	CFGs	define	CFLs
• We	now	know	that	a	PDA	recognizes	the	same	class
of	languages	and	hence	recognizes	CFLs

• We	know	that	every	PDA	is	a	FA	that	just	ignores	the
stack

• Thus	PDAs	recognize	regular	languages
• Thus	the	class	of	CFLs	contains	regular	languages
• But	since	we	know	that	a	FA	is	not	as	powerful	as	a
PDA	(e.g.,	0n1n)	we	can	say	that	CFLs	and	regular
languages	are	not	equivalent

Theory	of	Computation	- Fall'19	
Lorenzo	De	Stefani			 20



Relationship	of	Regular	Languages	&	CFLs

Regular 
languages

Context Free 
Languages

Theory	of	Computation	- Fall'19	
Lorenzo	De	Stefani			 21


