Theory of Computation

Lecture 9: Pumping Lemma for CFLs

Outline

- Pumping Lemma for CFL
- Proof Idea
- Examples

From Sipser Chapter 2.3

Non Context Free Languages

- Just like there are non regular languages, there are languages that are not context free
 - They cannot be generated by a CFG
 - They cannot be generated by a PDA
- How do we show that a language is not context-free?
 - We use a pumping lemma for CFLs!

Pumping Lemma for CFGs

If A is a context-free language then there is a pumping length p such that, if s is any string in A with length \ge p, then s may be divided into five pieces x = uvxyz satisfying 3 conditions:

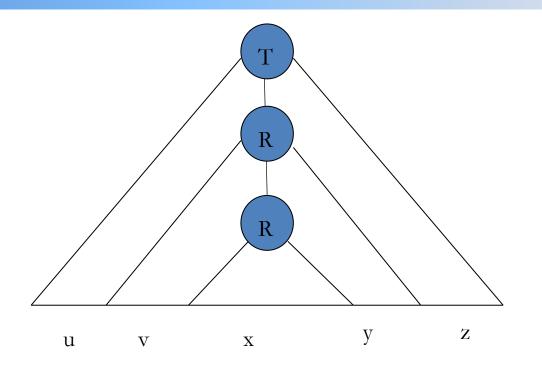
- 1. For each i ≥ 0 , $uv^i xy^i z \in A$
- 2. |vy| > 0, and
- 3. $|vxy| \le p$

Proof Idea

For regular languages we applied the pigeonhole principle to the number of states to show that a state had to be repeated.

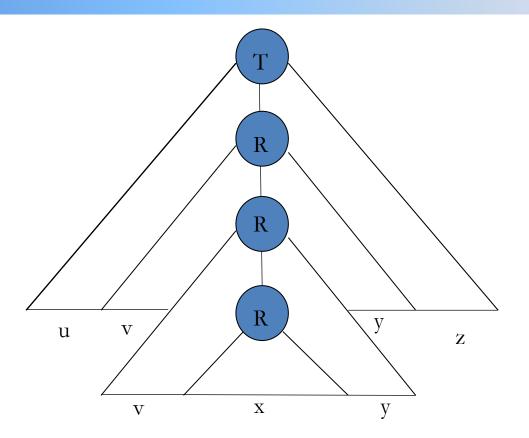
- Here we apply the same principle to the number of variables in the CFG to show that some variable will need to be repeated given a sufficiently long string
 - We will call this variable R and assume it can derive X

Proof Idea Sketch



Consider the derivation: T => uRz => uvRyz => uvRyz, where R => x and R => vRy

Proof Idea Sketch



We can replace R => x with R => vRy and "pump" vRy to derive uvixyiz which therefore must also belong to the language

Example 2.36

Use the pumping lemma to show that the language $B = \{a^n b^n c^n \mid n \ge 0\}$ is not a CFL

- What string should we pick?
 - Select the string s = $a^p b^p c^p$. $s \in B$ and |s| > p
- How should we break up s?
 - We have to consider all possible ways of breaking down s and show that in no case the pumping lemma can be applied
 - Condition 2 says that v and y cannot both be empty
 - By condition 3 $|vxy| \le p$ so u and z cannot both be empty
 - v and y each only contain one type of symbol (one symbol is left out)
 - uv²xy²z cannot contain equal number of a's, b's and c's
 - Either v or y contains more than one type of symbol
 - Pumping will violate the separation of a's, b's and c's

Example 2.38

Use the pumping lemma to show that the language $D = \{ww \mid w \in \{0,1\}^*\}$ is not a CFL

- What string should we pick?
 - Consider $s = \{0^{p}10^{p}1\}$
 - But this can be pumped—try generating uvxyz so it can be pumped
 - Hint: we need to straddle the middle for this to work
 - Solution: u=0^{p-1}, v=0, x=1, y=0, z=0^{p-1}1
 - Check it. Does $uv^2xy^2z \in D$? Does $uwz \in D$?

Example 2.38

Use the pumping lemma to show that the language $D = \{ww \mid w \in \{0,1\}^*\}$ is not a CFL

- What string should we pick?
 - Choose $s = \{0^{p}1^{p}0^{p}1^{p}\}$. How can we partition it?
 - First note that vxy must straddle midpoint. Otherwise pumping makes 1st half ≠ 2nd half

» since |vxy| < p, it is all 1's in left case and all 0's in right case

• If does straddle midpoint, if pump down, then not of form ww since neither 1's or 0's match in each half

Conclusion on Pumping Lemma

- Important similarities in the version for Regular Languages and Contex Free Languages
- Used to show that a language is not RL or CFL
- Remember common structure of the proof using pidgeonhole principle
- When applying it pay attention to the <u>quantifiers</u>:
 - Is sufficient to show that one string from the language cannot be pumped
 - We need to show that it cannot be pumped for all possible ways of breaking it down
- Remember correct direction of the implication:
 - If a language violates the pumping lemma then it is guaranteed to not be Regular/Contex Free
 - Viceversa is not true!