b-Monocyclic monoterpenes :

Their parent hydrocarbon is *p*-menthane ,with M.F. C₁₀H₂₀

1- Limonene $C_{10}H_{16}$

Occurs in limonene and orange oils ,in pepperimt oils and in turpentine oils It contains two unconjugated double bonds , because it adds two bromine molecules to give tetrabromide and adds two hydrogen molecules to give p-menthane with $M.F.C_nH_{2n}$, thus , limonene is a monocyclic compound .

The two double bonds are unconjugated since the copmpound did not react with maleic anhydride .

To proof that there is one double bond at C_1 using the following reactions , Also , the carbon skeleton of limonene will known .

To proof that there is one double bond at $C_{\mbox{-}8}$,

Since , the structure of carvoxime is known , the structure of limonene must be has one double bond at $\mathrm{C}_{\text{-}8}$.

menthyl acetate

menthol

menthol

menthone

Since reduction of menthol with hydrogen iodide, gives *p*-menthane, thus, menthol most probably contains this carbon skeleton i.e.it is a monocyclic monoterpene.

menthol

p-menthane

Finally, since pulegone gives menthol on reduction, and since structure of pulegone is known, it therefore follows that menthol must be,

3- Menthone $C_{10}H_{18}O$ occurs in pepperiment oils

It behaves as a ketone ,that it can be condensed with hydrazine and hydroxyl amine to give the hydrazone and oxime derivative respectively .

It is a satutated compound since it did not react with bromine .

When heated with hydrogen iodide / red phosphorous , it is reduced to p- menthane , thus , it a monocyclic compound .

It contains one double bond ,since it adds one H₂ ,one Br₂

It behaves as a ketone by condensation with hydrazine and hydroxyl amine.

It is a monocyclic ,has p-mebthane structure with one double bond and a carbonyl ketone at C-3 as shown:

To confirm that pulegone is α,β -unsaturated ketone i.e.to indicate the position of the carbonyl group and the double bond this is can be done by the following reactions;

4- Piperitone C₁₀H₁₆O

Occurs in eucalyptus and is a valuable source of menthone and thymol It contains one double bond ,since it adds one Br_2 and one H_2 .

These reactions shows that piperitone is p-menyh-3-one,but do not show the position of the double bond.

This is had been shown on oxidation with KMnO₄.

5- Carvone C₁₀H₁₄O

Occurs in caraway oils.

It behaves as a ketone from its reactions, by forming an oxime with NH₂OH and hydrazone with NH₂NH₂.

Bromination indicates that ,it adds two molecules of Br_2 , thus, it contains two double bonds, and its parent hydrocarbon with M.F.C₁₀H₂₀, i.e.C_nH_{2n}, means p-menthane structure, thus, it is monocyclic compound.

Position of the carbonyl group can be indicated by the following reaction:

Thus ,it has p-cymene structure, and the keto group is in the ring ,in the *ortho* position to the methyl group.

Degradative oxidation to indicate positions of the double bonds.

To indicate that there is one double bond in the 8-position.

7

To indicate that there is one double bond in the 6-position

the position of the ketonic group in carvone.