
2-Bicyclic monoterpenes:

a-6+3 group

Carane group: e.g. Carone $C_{10}H_{16}O$

It behaves as a ketone ,that it can be condensed with hydrazine and hydroxyl amine to give the hydrazone and oxime derivative respectively.

It is a satutated compound since it did not react with bromine.

The parent hydrocarbon has M.F. C_nH_{2n-2}, called ,carane , it is bicyclic

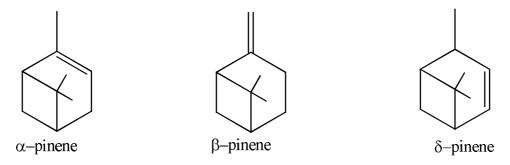
The following reactions to indicate position of the carbonyl group, the presence of three membered ring and six membered ring.

Thujane group: Umbellulone C₁₀H₁₄O

It is found in leaves of Califorina laurel

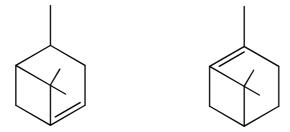
It behaves as a ketone ,that it can be condensed with hydrazine and hydroxyl amine to give the hydrazone and oxime derivative respectively .

It contains one double bond , because it adds one bromine molecules to give dibromide ,thus , the parent hydrocarbon of umbellulone is thujane with M.F.C $_nH_{2n-2}$, thus , it is a bicyclic compound.

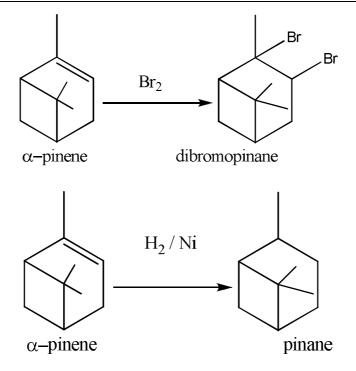

It is α,β -unsaturated ketone from the following reaction,

Structure of it was established by degradative oxidation,

umbellulauric acid 2-acetyl-1-isopropylcycolpropanecarboxylic acid (1-isopropylcyclopropane-1,2-dicarboxylic acid)


b) 6+4 group, Pinane group:

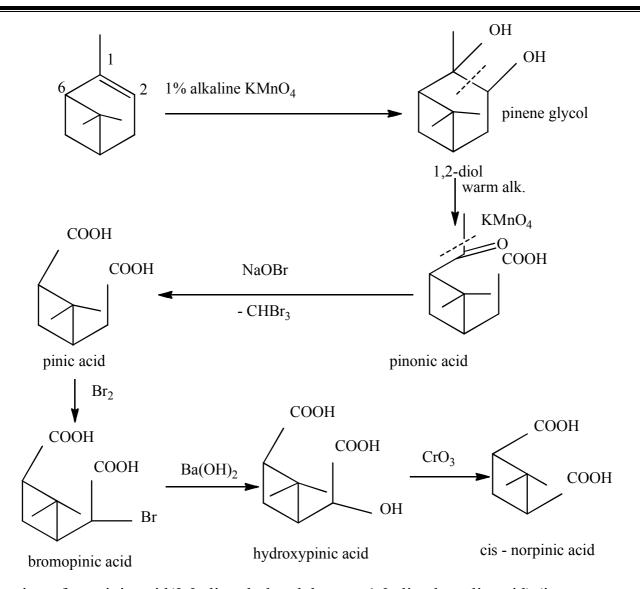
There are three isomers for pinenes, α -pinene , β -pinene and δ -pinene


Bredt's rule:

States that a double bond cannot be formed by a carbon atom occupying the bridge-head (of a bicyclic system).

α-pinene $C_{10}H_{16}$

This compound reacted with one molecule of hydrogen and one molecule of bromine ,thus, α -pinene contains one double bond .


Since M.F. of pinane is $C_{10}H_{18}$, = C_nH_{2n} -2 thus , α -pinene is *bicyclic*

This compound contains six membered ring , since it can be converted into α -terpineol , position of the double bond in α -pinene as in α -terpineol.

Degradative oxidation for the six membered ring(to indicate the presence of the four membered ring), the two compounds have the same carbon skeleton); i.e. α -pinene has the same carbon skeleton of α -terpineol and thus, α -pinene contains a six membered ring and ring opening occurs at C-6.

$$\begin{array}{c} 1 \\ \hline \\ \alpha \text{-pinene} \end{array}$$
 EtOH / H_2SO_4 OH α -terpineol

The second ring is a four membered ring by degradative oxidation of the six membered ring

Formation of norpinic acid(2,2-dimethylcyclobutane-1,3-dicarboxylic acid),(its parent hydrocarbon has $M.F.C_nH_{2n}$; *monocyclic* indicates that cyclobutane ring is present.

c) Camphane group : $\emph{Camphor}~C_{10}H_{16}O$

Obtained from camphor laurel trees in china and japan

It behaves as a ketone ,that it can be condensed with hydrazine and hydroxyl amine to give the hydrazone and oxime derivative respectively .

It is a satutated compound since it did not react with bromine .

Position of the carbonyl group at C-2 from this reaction

It is a bicyclic compound from the following reactions

$$\frac{Zn \, (Hg)/HCl \ or}{NH_2NH_2 \ then \ KOH/heat}$$
 camphane
$$C_{10}H_{18} = C_nH_{2n-2}$$
 bicyclic
$$P_2O_5 \ distillation$$
 camphor
$$P_2O_5 \ distillation$$

This compound contains six membered ring,

It is a ketone not an aldehyde ,also contains five membered ring as follows:

camphor camphoric acid
$$CO_2H$$
 CO_2H CO_2H

Since camphoric acid is a dicarboxylic acid and has the same number of carbons as camphor , camphoric acid is a monocyclic compound ,has the M.F.C $_{10}H_{16}O_4$ and its parent hydrocarbon is a saturated hydrocarbon by neglecting two carboxylic groups and three methyl groups ,the parent hydrocarbon of camphoric acid is has the M.F.C $_5H_{10}$ equivalent to C_nH_{2n} .It is a monocyclic and a cyclopentane ring and this is confirmed by synthesis of camphor.