An Introduction to Electrochemistry

Redox Reaction $ox_1 + red_2 <=> red_1 + ox_2$

Balancing Redox Equations

half-reaction technique

$$Sn^{2+} + Fe^{3+} <=> Sn^{4+} + Fe^{2+}$$

 $Fe^{2+} + MnO_4^- <=> Fe^{3+} + Mn^{2+}$

Balancing using the electron change

- 1- balance no of atoms
- 2- determine the e change for the half reaction
- 3- balance the charges -ve (OH⁻, alkaline med),
 +ve (H⁺, acidic med)
- 4- balance oxygen and hydrogen by adding H₂O
- (AECO)
- $H_2O_2 + MnO_4 \rightarrow O_2 + Mn^{2+}$ (acid soln)

- $H_2O_2 \rightarrow O_2$
- $H_2O_2 \rightarrow O_2 + 2e$
- $H_2O_2 \rightarrow O_2+2H^++2e$

• X 5

- $MnO_4^- \rightarrow Mn^{2+}$
- $MnO_4^- + 5e \rightarrow Mn^{2+}$
- $MnO_4^-+8H^++5e \rightarrow Mn^{2+}$
- $MnO_4^- + 8H^+ + 5e \rightarrow Mn^{2+}$
- +4H₂O
- X 2

$5H_2O_2 + 2MnO_4^- + 6H^+ \rightarrow 5O_2 + 2Mn^{2+} + 8H_2O_2$

Balancing without knowledge of oxdn stats

- 1- balance the no of atoms (red/oxd)
- 2- balance oxygen (by adding H₂O)
- 3- balance hydrogen (by adding H+)
- 4- balance the charges (by adding e)
- (AOHC)
- $H_2O_2 + MnO_4 \rightarrow O_2 + Mn^{2+}$ (acid soln)

• $H_2O_2 \rightarrow O_2$

X 5

- $H_2O_2 \rightarrow O_2 + 2H^+$
- $H_2O_2 \rightarrow O_2 + 2H^+ + 2e$

- $MnO_4^- \rightarrow Mn^{2+}$
- $MnO_4^- \rightarrow Mn^{2+} + 4H_2O$
- $MnO_4^- + 8H^+ \rightarrow Mn^{2+} + 4H_2O$
- $MnO_4^- + 8H^+ + 5e \rightarrow Mn^{2+} + 4H_2O$
- X 2

$5 H_2O_2 + 2 MnO_4^- + 6H^+ \rightarrow 5 O_2 + 2 Mn^{2+} + 8H_2O_2$

Potassium permenganate

- Oxidising agent for over 100 years.
- Mn (+2,3,4,6,7)
- The most common reaction in acidic soln >= 0.1N

$MnO_4^- + 8H^+ + 5e \rightarrow Mn^{2+} + 4H_2O$

 MnO₄⁻ reacts rapidly with many reducing agents, but some substances require heating or the use of cat to speed up the reaction

- <u>MnO₄ is a strong agent to oxidise Mn(II) to MnO₂
 </u>
- $3Mn^{2+}+2MnO_4^-+2H_2O \rightarrow 5MnO_2(s) + 4H^+$

- The slight excess of MnO_4^- (at ep) $\rightarrow MnO_2(s)$.
- The reaction is slow → the ppt is formed at the ep

Precautions taken in the prepn of KMnO₄ soln

Traces of MnO₂ (present in KMnO₄ or formed by the reaction with traces of reducing agents in H₂O) catalyses the decomposition of KMnO₄ soln.

- Dissolve the crystals (heat) → to destroy reducible substances → filter through sintered glass (non reducing filters) → MnO₂ is removed
 - \rightarrow pure soln of KMnO₄ \rightarrow titrate against stand soln
 - \rightarrow keep in the dark \rightarrow avoid acidifying
 - \rightarrow its concen would be stable for several months

Acidic soln of MnO₄⁻ is not stable

$4MnO_4^- + 4H^+ \rightarrow 4MnO_2(s) + 3O_2(g) + 2H_2O$

- Slow reaction (dil soln, RT)
- <u>Never</u> add excess MnO₄⁻ to a reducing agent and then raise the temp to hasten oxdn
- → the foregoing reactn will occur at an appreciable rate.

- Sod oxalate
- Exact mechan is not clear.
- T=60°C
- The rate increases as Mn(II) is formed
- Autocatalytic reactn

- Pure sodium oxalte (Na₂C₂O₄, mol wt 134)
 (0.2856 g) in water, H₂SO₄ is added, titrated 70 °C
- KMnO₄ 45.12 mL
- e.p. overrun
- Extra vol required 1.74 mL 0.0516 M oxalic acid
- Calculate the molarity of KMnO₄
- Two solutions NaHA, HA how can you calculate the pH of each solution
- How can you prepare 250 mL, 0.10 M solution NaOH (mol wt 40)

- 5 (M*V) KMnO₄ = 2 ((M*V)Na₂C₂O₄ + (M*V)H₂C₂O₄)
- wt (Na₂C₂O₄) = (M*V)oxalate*mol wt/1000
- 0.2856 = (M*V)oxalate * 134 /1000
- (M*V)oxalate = 2.127
- (M*V) oxalic = 0.0516 * 1.74 = 0.0898
- 5 (M*45.12) KMnO₄ = 2 (2.127 + 0.0898)
- M (KMnO₄) = 0.0197 mmol/ml

- How can you prepare 250 mL, 1.0 M solution NaOH (mol wt 40)
- 40 gm NaOH (in 1.0 L 1000 mL) ------ 1.0 M
- 1000 mL/4 = 250 mL
- 40 gm/4 = 10 gm
- 10 gm NaOH dissolved in 250 mL water = 1.0 M solution NaOH

Primary stand for MnO₄⁻

- Iron wire (high degree of purity (dil HCl) → soln → add reducing agent (SnCl₂) → redn of Fe(III) → Fe(II)
- If directly titrated against KMnO₄ in the presence of Cl⁻
- \rightarrow oxdn of Cl⁻ \rightarrow Cl₂
 - Normally this reaction is slow
 - Presence of iron → catalyse the reaction
 - A soln of Mn(II) sulphate, H₂SO₄, and H₃PO₄
 (Zimmermann Reinhardt reagent) called preventive soln.
 - It is added to Fe(II) in HCl before titrn with KMnO₄

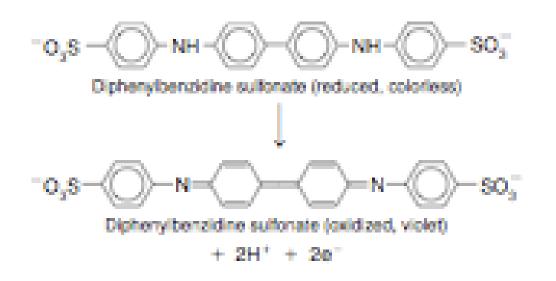
Determination with MnO₄⁻ : Iron in iron ores

- <u>Iron ore</u> → add HCl, heat → hot soln Fe (II, III) → add SnCl₂ (slight excess to ensure complete redn)
- \rightarrow Fe(II) soln + SnCl₂ (must be removed to avoid reactn with MnO₄⁻)
 - → cool then add Hg(II) chloride → Sn⁴⁺ +Hg₂Cl₂ (s) + Fe²⁺ + 2Cl⁻
 - Excess $SnCl_2 \rightarrow Hg_2Cl_2 + Sn^{2+} \rightarrow 2Hg + 2Cl^- + Sn^{4+}$
- Addn. of HgCl₂ should be slow and the soln. should be cold
- Hg produced in a finely devided state → ppt appears grey to black → sample should be discarded

Oxidation with Potassium Dichromate

$$\frac{\text{Cr}_2\text{O}_7^{2-} + 14\text{H}^+ + 6\text{e}^-}{\text{Dicheomate}} \approx 2\text{Cr}^{3+} + 7\text{H}_2\text{O} \qquad E^\circ = 1.36 V$$

- Is a less powerful oxidizing agent than MnO₄⁻.
 In basic solution, Cr₂O₇²⁻ is converted into yellow chromate ion CrO₄²⁻
- CrO₄²⁻ oxidizing power is nil

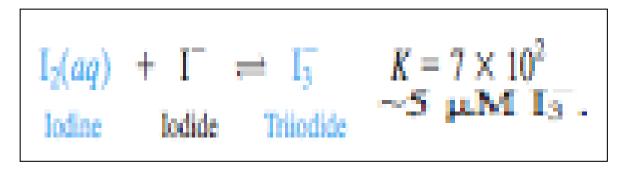

$$CrO_4^{2-} + 4H_2O + 3e^- \rightleftharpoons Cr(OH)_3(s, hydrated) + 5OH^- E^\circ = -0.12 V$$

- $K_2Cr_2O_7$, is a primary standard.
- Stable solution and cheap.
- K₂Cr₂O₇ is orange
- Cr³⁺ complexes range from green to violet

Cr(VI) waste is

carcinogenic

- *indicators should be used*
- e.g. diphenylamine sulfonic acid or diphenylbenzidine sulfonic acid



- <u>K₂Cr₂O₇ < MnO₄⁻ as an oxidant</u>
- Employed for the determination of Fe(II) and, indirectly, for species that will oxidize Fe(II) to Fe(III).
- For indirect analyses,
- unknown + measured excess Fe(II).
- unreacted Fe(II) against K₂Cr₂O₇.
- e.g., organic peroxides and CIO₃, NO₃, MnO₄

Methods Involving Iodine

 When a reducing analyte is titrated with iodine (to produce I⁻), the method is called <u>iodimetry.</u> In *iodometry*, an oxidizing analyte is added to excess I⁻ to produce iodine, which is then titrated with standard thiosulfate solution.

I₂ is only slightly soluble in water (1.3 * 10⁻³ M at 20 °C), but its solubility is enhanced by complexation with I⁻

- 0.05 M solution of I₃ for titrations is prepared by dissolving 0.12 mol of KI + 0.05 mol of I₂ in 1 L of water
- When iodine is used as a titrant, it means a solution of I_2 + excess I^2 .

Use of Starch Indicator

starch is used as an indicator for iodine.

With starch, the limit of detection is extended by about a factor of 10.

- In iodimetry (titration with I₃), starch can be added at the beginning of the titration.
- The first drop of excess I₃⁻ after the equivalence point causes the solution to turn dark blue.

- In iodometry (titration of I₃), I₃ is present throughout the reaction up to the eqc. pt.
- Starch should be added just before the eqc. pt. (fading of the I₃⁻).
- If not, iodine would remain bound to starch particles after the *eqc. pt* is reached.
- Starch-iodine complexation is temperature dependent.
- At 50 °C, the color is only 1/10 as intense as at 25 °C
 → cooling in ice water is recommended.
- Organic solvents → decrease the affinity of iodine for starch

(Exam in 3 pages) (Part A: Analytical Chemistry 45 marks)

(1) (i) Define the following terms:

- a) Le Chatelier's Principle, b) Henderson-Hasselbalch Equation,
- *c)* indicator range, *d)* Max buffering capacity.
- (ii) A typical protein contains 16.20 wt% nitrogen. A 0.500-mL aliquot of protein solution was digested, and the liberated NH₃ was distilled into 10.00 mL of 0.0214 M HCI. Unreacted HCI required 3.26 mL of 0.0198 M NaOH for complete titration. Find the concentration of protein (mg protein/mL) in the original sample.
- (iii) Indicate whether an aqueous solution of the following compounds is acidic, neutral, or basic.
 (a) NH₄OAc
 (b) NaNO₃
 (c) Na₂C₂O₄
 (d) NaH₂PO₄
 (2 marks)
 (iv) Identify the principal conjugate acid/base pair of the following:
 (a) H₂S
 (b) H₃AsO₄
 (c) H₂CO₃.
 (3 marks)

(2) (i) <u>Fill in the gaps using the word or phrase that best completes each</u> <u>statement.</u> (11 marks)

- a) ------, to form -----.
- **b)** A buffered solution resists changes in ----- when ----- and ----- are added or when ------ occurs and it is composed of ------.
- **c)** The slight excess of MnO₄⁻ at end point results in the precipitation of ---------. The reaction is ------ at room temperature.
- **d)** A solution of MnSO₄, H₂SO₄, and H₃PO₄ is called ------ and It is added to Fe(II) in HCl solution before titration with ------ to ------.

(Please turn the page)

Date: 22-06-2016

Time: 3hrs.

<u>(8 marks)</u>

(5 marks)

(1) (i) <u>Define the following terms</u>:

a) Le Chatelier's Principle, b) Henderson-Hasselbalch Equation,

- c) indicator range, d) Max buffering capacity.
- (ii) A typical protein contains 16.20 wt% nitrogen. A 0.500-mL aliquot of protein solution was digested, and the liberated NH₃ was distilled into 10.00 mL of 0.0214 M HCI. Unreacted HCI required 3.26 mL of 0.0198 M NaOH for complete titration. Find the concentration of protein (mg protein/mL) in the original sample.

<u>(5 marks)</u>

(iii) Indicate whether an aqueous solution of the following compounds is acidic, neutral, or basic.
(a) NH₄OAc
(b) NaNO₃
(c) Na₂C₂O₄
(d) NaH₂PO₄
(2 marks)
(iv) Identify the principal conjugate acid/base pair of the following:
(a) H₂S
(b) H₃AsO₄
(c) H₂CO₃.

(2) (i) <u>Fill in the gaps using the word or phrase that best completes each</u> <u>statement.</u> (11 marks)

(i) ------, to form -----.

(ii) A buffered solution resists changes in ----- when ----- and ----- are added or when ------ occurs and it is composed of -----.

(iii) The slight excess of MnO_4^- at end point results in the precipitation of ------. The reaction is ------ at room temperature.

a) A solution of MnSO₄, H₂SO₄, and H₃PO₄ is called ------ and It is added to Fe(II) in HCI solution before titration with ------ to ------.

(ii) Calculate the pH value of the following solutions: (9 marks)

(*i*) A 5.0 mL of 0.100 *M* H₂B solution (weak acid, $K_{a1} = 1.0 \times 10^{-3}$ and $K_{a2} = 1.0 \times 10^{-7}$).

(*ii*) A 40.0 mL of 0.100 *M* H₂B solution (weak acid, $K_{a1} = 1.0 \times 10^{-3}$ and $K_{a2} = 1.0 \times 10^{-7}$) and 20.0 mL of 0.100 *M* NaOH solution.

(iii) A 60.0 mL, 0.05 M solution of NaOH and 30.0 mL of 0.100 M HCl solution.

(iv) A 2 M solution of sodium benzoate. pKa for benzoic acid is 4.01.

(v) A 5.0 mL, 0.10 *M* NH₃ solution (K_b of NH₃ is 1.8 x 10⁻⁵).

(vi) A 1.5 M formic acid (pKa = 3.751) and 1 M sodium formate.

(iii) <u>Tell if each of the following statements is true or false. If false, rew</u> <u>the correct statement.</u> (7 marks)

(vii)lonic compounds are ionized in water and are called non-electrolytes.

(viii)The rate of the reaction of $C_2 O_4^{2-}$ with MnO_4^{-} increases as Mn(II) is formed.

(ix) For a back titration of MnO_4^- , add excess MnO_4^- to a reducing agent and then raise the temperature to hasten oxidation.

(x) The oxidation of Cl⁻ by MnO_4^- is a slow reaction and the presence of Fe³⁺ ions catalyses the reaction.

(xi) Strength is expressed as g/L while mg/L is the same as part per million.

(xii)Potassium dichromate can be used as a primary standard material.

A *pH* calculation for a solution of NaHA agrees with that for a weak acid of the type HA.

Preparation and Standardization of I₃⁻ Solutions

- Triiodide (I₃⁻) is prepared by dissolving solid I₂ in excess KI.
- Sublimed I₂ is pure enough to be a primary standard, but it is seldom used as a standard because it evaporates while it is being weighed.
- Instead, the approximate amount is rapidly weighed, and the soln of I₃⁻ is standardized with a pure sample of analyte or Na₂S₂O₃.
- Acidic solutions of I₃⁻ are unstable because the excess I⁻ is slowly oxidized by air

$$6I^- + O_2 + 4H^* \rightarrow 2I_3^- + 2H_2O$$

- In neutral solutions, oxidation is insignificant in the absence of heat, light, and metal ions.
- At pH11, I₃⁻ disproportionates to hypoiodous acid, iodate, and iodide.
- To prepare standard I₃⁻ → add a weighed quantity of the primary stan- dard potassium iodate (KIO₃) to a small excess of KI. Then add excess strong acid (pH 1) → I₃⁻:

$$IO_3^- + 8I^- + 6H^+ \implies 3I_3^- + 3H_2O$$

- Freshly acidified iodate + iodide can be used to standardize thiosulfate.
- I_3^- must be used immediately or it will be oxidized by air.
- The disadvantage of KIO₃ is its low mol wt relative to the number of electrons it accepts → a larger weighing error

Use of Sodium Thiosulfate

 Sodium thiosulfate is the almost universal titrant for triiodide. In neutral or acidic solution, triiodide oxidizes thiosulfate to tetrathionate:

$$I_{3}^{-} + 2S_{2}O_{3}^{2-} \rightleftharpoons 3I^{-} + O = S - S - S - S - S = O$$

$$I_{0}^{-} \qquad I_{0}^{-}$$
Thiosolfate Tetrathionate

should be carried out below pH 9

In basic solution, $I_3{}^-\,$ disproportionates to $I^-\,$ and HOI, which can oxidize $S_2O_3{}^{2^-}$ to $SO_4{}^{2^-}$

- The common form of thiosulfate, Na₂S₂O₃. 5H₂O, is not pure enough to be a primary standard → S₂O₃²⁻ is usually standardized by reaction with a fresh solution of I₃⁻ (KIO₃ + KI).
- To prepare a stable solution of S₂O₃²⁻ → dissolve Na₂S₂O₃
 in high-quality, freshly boiled distilled water.
- Dissolved CO₂ makes the solution acidic \rightarrow disproportionation of S₂O₃²⁻: S₂O₃²⁻ + H⁺ \implies HSO₃⁻ + S(s)

• Metal ions catalyze atmospheric oxidation of S₂O₃²⁻:

$$\begin{array}{l} 2Cu^{2+} + 2S_2O_3^{2-} \rightarrow 2Cu^+ + S_4O_6^{2-} \\ \\ 2Cu^+ + \frac{1}{2}O_2 + 2H^+ \rightarrow 2Cu^{2+} + H_2O \end{array}$$

- $S_2O_3^{2-}$ solutions should be stored in the dark.
- Addition of 0.1 g of sodium carbonate per liter maintains the pH in an optimum range for stability of the solution.
- Three drops of chloroform should also be added to each bottle of $S_2O_3^{2-}$ solution to help prevent bacterial growth.
- An acidic solution of $S_2O_3^{2-}$ is unstable, but the reagent can be used to titrate I_3^{-} in acidic solution because the reaction with I_3^{-} is faster than:

$$S_2O_3^{2-} + H^+ \implies HSO_3^- + S(s)$$

Bisulfite Sulfur

Analytical Applications of Iodine

- Reducing agents can be titrated directly with standard I₃⁻ in the presence of starch, until reaching the intense blue starch-iodine end point.
- An example is the iodimetric determination of vitamin C:
- Oxidizing agents can be treated with excess $I^2 \rightarrow I_3^-$.

e.p.

• The iodometric analysis is completed by titrating the liberated I_3^- with standard $S_3O_3^{2-}$. Add starch just before

Oxidants		Reductants		
BiO ₃	Bismuthate	НО О		
BrO_3^-	Bromate	$\rightarrow \rightarrow \rightarrow 0$		
Br ₂	Bromine	но-/ >=<	Ascorbic acid (vitamin C)	
Ce^{4+}	Ceric	OH OH		
$CH_3 \rightarrow SO_2NC$		${BH_4^-\over Cr^{2+}}$	Borohydride Chromous	
		$S_2O_4^{2-}$	Dithionite	
		Fe^{2+}	Ferrous	
Cl ₂	Chlorine	N_2H_4	Hydrazine	
ClO ₂	Chlorine dioxide		Tryutazine	
$Cr_2O_7^{2-}$	Dichromate	НО−⟨()⟩−ОН	Hydroquinone	
FeO_4^{2-}	Ferrate(VI)		Understanding	
H_2O_2	Hydrogen peroxide	NH ₂ OH	Hydroxylamine	
OC1-	Hypochlorite	H ₃ PO ₂	Hypophosphorous acid	
IO_3^-	Iodate	H ₃ C CH ₃ CH ₃ C	CH ₃ CH ₂ OH	
I_2	Iodine	CH ₃	Retinol (vitamin A)	
$Pb(acetate)_4$	Lead(IV) acetate	Sn ²⁺	Stonnous	
HNO ₃	Nitric acid		Stannous	
0	Atomic oxygen	SO_3^{2-}	Sulfite	
O ₃	Ozone	SO_2	Sulfur dioxide	
HClO ₄	Perchloric acid	$S_2O_3^{2-}$	Thiosulfate	
IO_4^-	Periodate	CH ₃	$-\begin{pmatrix} CH_3 \\ I \\ CH_2 - CH_2 - CH - CH_2 \end{pmatrix}_3 - H$	
MnO_4^-	Permanganate	HO		
$S_2O_8^{2-}$	Peroxydisulfate			
-2-8		$H_3C^{\prime} \sim CH_3$		
		CH ₃	α -Tocopherol (vitamin E)	

Species analyzed	Oxidation reaction	Notes
Fe ²⁺	$Fe^{2+} \Rightarrow Fe^{3+} + e^{-}$	Fe ³⁺ is reduced to Fe ²⁺ with Sn ²⁺ or a Jones reductor. Titration is carried out in 1 M H ₂ SO ₄ or 1 M HCl containing Mn ²⁺ , H ₃ PO ₄ , and H ₂ SO ₄ . Mn ²⁺ inhibits oxidation of Cl ⁻ by MnO ₄ . H ₃ PO ₄ complexes Fe ³⁺ to prevent formation of yellow Fe ³⁺ -chloride complexes.
$H_2C_2O_4$	$\mathrm{H_2C_2O_4} \rightleftharpoons \mathrm{2CO_2} + \mathrm{2H^+} + \mathrm{2e^-}$	Add 95% of titrant at 25°C, then complete titration at 55°–60°C.
Br ⁻	$\mathrm{Br}^- \rightleftharpoons \frac{1}{2} \mathrm{Br}_2(g) + \mathrm{e}^-$	Titrate in boiling 2 M H_2SO_4 to remove $Br_2(g)$.
H ₂ O ₂	$H_2O_2 \rightleftharpoons O_2(g) + 2H^+ + 2e^-$	Titrate in 1 M H_2SO_4 .
HNO_2	$HNO_2 + H_2O \Rightarrow NO_3^- + 3H^+ + 2e^-$	Add excess standard KMnO ₄ and back- titrate after 15 min at 40°C with Fe ²⁺ .
As ³⁺	$H_3AsO_3 + H_2O \rightleftharpoons H_3AsO_4 + 2H^+ + 2e^-$	Titrate in 1 M HCl with KI or ICl catalyst.
Sb ³⁺	$H_3SbO_3 + H_2O \rightleftharpoons H_3SbO_4 + 2H^+ + 2e^-$	Titrate in 2 M HCl.
Mo ³⁺	$Mo^{3+} + 2H_2O \rightleftharpoons MoO_2^{2+} + 4H^+ + 3e^-$	Reduce Mo in a Jones reductor, and run the Mo^{3+} into excess Fe^{3+} in 1 M H_2SO_4 . Titrate the Fe^{2+} formed.
W ³⁺	$W^{3+} + 2H_2O \rightleftharpoons WO_2^{2+} + 4H^+ + 3e^-$	Reduce W with Pb(Hg) at 50°C and titrate in 1 M HCl.
U ⁴⁺	$\mathrm{U}^{4+} + 2\mathrm{H}_{2}\mathrm{O} \rightleftharpoons \mathrm{UO}_{2}^{2+} + 4\mathrm{H}^{+} + 2\mathrm{e}^{-}$	Reduce U to U^{3+} with a Jones reductor. Expose to air to produce U^{4+} , which is titrated in 1 M H ₂ SO ₄ .
Ti ³⁺	$\mathrm{Ti}^{3+} + \mathrm{H}_{2}\mathrm{O} \rightleftharpoons \mathrm{Ti}\mathrm{O}^{2+} + 2\mathrm{H}^{+} + \mathrm{e}^{-}$	Reduce Ti to Ti ³⁺ with a Jones reductor, and run the Ti ³⁺ into excess Fe ³⁺ in 1 M H_2SO_4 . Titrate the Fe ²⁺ that is formed.
$Mg^{2+}, Ca^{2+}, Sr^{2+}, Ba^{2+}, Zn^{2+}, Co^{2+}, La^{3+}, Th^{4+}, Pb^{2+}, Ce^{3+}, BiO^+, Ag^+$	$\mathrm{H_2C_2O_4} \rightleftharpoons \mathrm{2CO_2} + \mathrm{2H^+} + \mathrm{2e^-}$	Precipitate the metal oxalate. Dissolve in acid and titrate the $H_2C_2O_4$.
$S_2O_8^{2-}$	$S_2O_8^{2-} + 2Fe^{2+} + 2H^+ \rightleftharpoons 2Fe^{3+} + 2HSO_4^-$	Peroxydisulfate is added to excess standard Fe^{2+} containing H_3PO_4 . Unreacted Fe^{2+} is titrated with MnO_4^- .
PO ₄ ³⁻	$Mo^{3+} + 2H_2O \rightleftharpoons MoO_2^{2+} + 4H^+ + 3e^-$	$(NH_4)_3PO_4 \cdot 12MoO_3$ is precipitated and dissolved in H_2SO_4 . The Mo(VI) is reduced (as above) and titrated.

Table 16-3 Analytical applications of permanganate titrations

Species analyzed	Oxidation reaction	Notes
W ³⁺	$W^{3+} + 2H_2O \rightleftharpoons WO_2^{2+} + 4H^+ + 3e^-$	Reduce W with Pb(Hg) at 50°C and titrate in 1 M HCl.
U ⁴⁺	$\mathrm{U}^{4+} + 2\mathrm{H}_{2}\mathrm{O} \rightleftharpoons \mathrm{UO}_{2}^{2+} + 4\mathrm{H}^{+} + 2\mathrm{e}^{-}$	Reduce U to U^{3+} with a Jones reductor. Expose to air to produce U^{4+} , which is titrated in 1 M H ₂ SO ₄ .
Ti ³⁺	$Ti^{3+} + H_2O \rightleftharpoons TiO^{2+} + 2H^+ + e^-$	Reduce Ti to Ti ³⁺ with a Jones reductor, and run the Ti ³⁺ into excess Fe ³⁺ in 1 M H_2SO_4 . Titrate the Fe ²⁺ that is formed.
Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Zn ²⁺ , Co ²⁺ , La ³⁺ , Th ⁴⁺ , Pb ²⁺ , Ce ³⁺ , BiO ⁺ , Ag ⁺	$\mathrm{H_2C_2O_4} \rightleftharpoons \mathrm{2CO_2} + \mathrm{2H^+} + \mathrm{2e^-}$	Precipitate the metal oxalate. Dissolve in acid and titrate the $H_2C_2O_4$.
S ₂ O ₈ ²⁻	$S_2O_8^{2-} + 2Fe^{2+} + 2H^+ \rightleftharpoons 2Fe^{3+} + 2HSO_4^-$	Peroxydisulfate is added to excess standard Fe^{2+} containing H_3PO_4 . Unreacted Fe^{2+} is titrated with MnO_4^- .
PO ₄ ³⁻	$Mo^{3+} + 2H_2O \rightleftharpoons MoO_2^{2+} + 4H^+ + 3e^-$	$(NH_4)_3PO_4 \cdot 12MoO_3$ is precipitated and dissolved in H_2SO_4 . The Mo(VI) is reduced (as above) and titrated.

Table 16-3	Analytical applications of permanganate titrations

Species analyzed	Oxidation reaction	Notes	
As ³⁺	$H_3AsO_3 + H_2O \rightleftharpoons H_3AsO_4 + 2H^+ + 2e^-$	Titrate directly in NaHCO ₃ solution with I_3^- .	
Sn ²⁺	$\mathrm{SnCl}_4^{2-} + 2\mathrm{Cl}^- \rightleftharpoons \mathrm{SnCl}_6^{2-} + 2\mathrm{e}^-$	Sn(IV) is reduced to Sn(II) with granular Pb or Ni in 1 M HCl and titrated in the absence of oxygen.	
N ₂ H ₄	$N_2H_4 \rightleftharpoons N_2 + 4H^+ + 4e^-$	Titrate in NaHCO ₃ solution.	
SÕ ₂	$SO_{2}^{-} + H_{2}O \rightleftharpoons H_{2}SO_{3}$ $H_{2}SO_{3} + H_{2}O \rightleftharpoons SO_{4}^{2-} + 4H^{+} + 2e^{-}$	Add SO ₂ (or H_2SO_3 or HSO_3^- or SO_3^2 to excess standard I_3^- in dilute acid and back-titrate unreacted I_3^- with standard thiosulfate.	
H ₂ S	$H_2S \rightleftharpoons S(s) + 2H^+ + 2e^-$	Add H_2S to excess I_3^- in 1 M HCl and back-titrate with thiosulfate.	
$Zn^{2+}, Cd^{2+}, Hg^{2+}, Pb^{2+}$	$M^{2+} + H_2S \rightarrow MS(s) + 2H^+$	Precipitate and wash metal sulfide.	
	$MS(s) \rightleftharpoons M^{2+} + S + 2e^{-}$	Dissolve in 3 M HCl with excess standard I_3^- and back-titrate with thiosulfate.	
Cysteine, glutathione, thioglycolic acid, mercaptoethanol	$2RSH \rightleftharpoons RSSR + 2H^+ + 2e^-$	Titrate the sulfhydryl compound at pH $4-5$ with I_3^- .	
HCN	$\rm I_2 + HCN \rightleftharpoons ICN + I^- + H^+$	Titrate in carbonate-bicarbonate buffer using <i>p</i> -xylene as an extraction indicator.	
H ₂ C=O	$H_2CO + 3OH^- \rightleftharpoons HCO_2^- + 2H_2O + 2e^-$	Add excess I ₃ plus NaOH to the unknown. After 5 min, add HCl and back-titrate with thiosulfate.	
Glucose (and other	0	Add excess I_3^- plus NaOH to the	
reducing sugars)	$O \\ \parallel \\ \text{RCH} + 3\text{OH}^- \rightleftharpoons \text{RCO}_2^- + 2\text{H}_2\text{O} + 2\text{e}^-$	sample. After 5 min, add HCl and back-titrate with thiosulfate.	
Ascorbic acid (vitamin C)	Ascorbate + $H_2O \rightleftharpoons$ dehydroascorbate + $2H^+$ + $2e^-$	Titrate directly with I_3^- .	
H ₃ PO ₃	$H_3PO_3 + H_2O \rightleftharpoons H_3PO_4 + 2H^+ + 2e^-$	Titrate in NaHCO ₃ solution.	

Table 16-4 Titrations with standard triiodide (iodimetric titrations)

Species analyzed	Reaction	Notes
Cl ₂	$Cl_2 + 3I^- \rightleftharpoons 2Cl^- + I_3^-$	Reaction in dilute acid.
HOCI	$HOCI + H^+ + 3I^- \rightleftharpoons CI^- + I_3^- + H_2O$	Reaction in 0.5 M H_2SO_4 .
Br ₂	$Br_2 + 3I^- \rightleftharpoons 2Br^- + I_3^-$	Reaction in dilute acid.
BrO ₃	$BrO_3^- + 6H^+ + 9I^- \rightleftharpoons Br^- + 3I_3^- + 3H_2O$	Reaction in 0.5 M H_2SO_4 .
IO_3^-	$2IO_3^- + 16I^- + 12H^+ \rightleftharpoons 6I_3^- + 6H_2O$	Reaction in 0.5 M HCl.
IO_4^-	$2IO_4^- + 22I^- + 16H^+ \rightleftharpoons 8I_3^- + 8H_2O$	Reaction in 0.5 M HCl.
O ₂	$O_{2} + 4Mn(OH)_{2} + 2H_{2}O \rightleftharpoons 4Mn(OH)_{3}$ 2Mn(OH)_{3} + 6H^{+} + 6I^{-} \rightleftharpoons 2Mn^{2+} + 2I_{3}^{-} + 6H_{2}O	The sample is treated with Mn^{2+} , NaOH, and KI. After 1 min, it is acidified with H_2SO_4 , and the I_3^- is titrated.
H_2O_2	$H_2O_2 + 3I^- + 2H^+ \rightleftharpoons I_3^- + 2H_2O$	Reaction in 1 M H_2SO_4 with NH_4MoO_3 catalyst.
O_3^a	$O_3 + 3I^- + 2H^+ \rightleftharpoons O_2 + I_3^- + H_2O$	O ₃ is passed through neutral 2 wt % KI solution. Add H ₂ SO ₄ and titrate.
NO_2^-	$2HNO_2 + 2H^+ + 3I^- \rightleftharpoons 2NO + I_3^- + 2H_2O$	The nitric oxide is removed (by bubbling CO_2 generated in situ) prior to titration of I_3^- .
As ⁵⁺	$H_3AsO_4 + 2H^+ + 3I^- \rightleftharpoons H_3AsO_3 + I_3^- + H_2O$	Reaction in 5 M HCl.
$S_2O_8^{2-}$	$S_2O_8^{2-} + 3I^- \rightleftharpoons 2SO_4^{2-} + I_3^-$	Reaction in neutral solution. Then acidify and titrate.
Cu ²⁺	$2Cu^{2+} + 5I^{-} \rightleftharpoons 2CuI(s) + I_{3}^{-}$	NH_4HF_2 is used as a buffer.
$Fe(CN)_6^{3-}$	$2Fe(CN)_6^{3-} + 3I^- \rightleftharpoons 2Fe(CN)_6^{4-} + I_3^-$	Reaction in 1 M HCl.
MnO_4^-	$2MnO_4^- + 16H^+ + 15I^- \Rightarrow 2Mn^{2+} + 5I_3^- + 8H_2O$	Reaction in 0.1 M HCl.
MnO ₂	$MnO_2(s) + 4H^+ + 3I^- \rightleftharpoons Mn^{2+} + I_3^- + 2H_2O$	Reaction in 0.5 M H_3PO_4 or HCl.
$Cr_2O_7^{2-}$	$Cr_2O_7^{2-} + 14H^+ + 9I^- \rightleftharpoons 2Cr^{3+} + 3I_3^- + 7H_2O$	Reaction in 0.4 M HCl requires 5 min for completion and is particularly sensitive to air oxidation.
Ce ⁴⁺	$2Ce^{4+} + 3I^{-} \rightleftharpoons 2Ce^{3+} + I_{3}^{-}$	Reaction in 1 M H_2SO_4 .

 Table 16-5
 Titration of I₃ produced by analyte (iodometric titrations)

a. The pH must be ≥ 7 when O₃ is added to I⁻. In acidic solution each O₃ produces 1.25 I₃⁻, not 1 I₃⁻.

[N. V. Klassen, D. Marchington, and H. C. E. McGowan, Anal. Chem. 1994, 66, 2921.]

Table 16-2Redox indicators

	Color		
Indicator	Oxidized	Reduced	E°
Phenosafranine	Red	Colorless	0.28
Indigo tetrasulfonate	Blue	Colorless	0.36
Methylene blue	Blue	Colorless	0.53
Diphenylamine	Violet	Colorless	0.75
4'-Ethoxy-2,4-diaminoazobenzene	Yellow	Red	0.76
Diphenylamine sulfonic acid	Red-violet	Colorless	0.85
Diphenylbenzidine sulfonic acid	Violet	Colorless	0.87
Tris(2,2'-bipyridine)iron	Pale blue	Red	1.120
Tris(1,10-phenanthroline)iron (ferroin)	Pale blue	Red	1.147
Tris(5-nitro-1,10-phenanthroline)iron	Pale blue	Red-violet	1.25
Tris(2,2'-bipyridine)ruthenium	Pale blue	Yellow	1.29

- (1) $\underline{MnO_4^- + 5e^- \rightarrow Mn^{2+}}$ (manganous ion)
- \rightarrow eq wt of potassium permanganate is 1/5th gram-mol wt 31.61 g.
- (KMnO₄ : 1/5 × 158.05 = 31.61) (2) $\underline{Cr_2O_7}^{2-}$ + 6e $\xrightarrow{-}$ 2Cr³⁺ (chromous ion)
- \rightarrow eq wt of potassium dichromate is I/6 gram-mol wt 49.03 g.
- $(K_2Cr_2O_7 : 1/6 \times 294.18 = 49.03)$ (3) $I_2 + 2e^- \rightarrow 2I^-$ (iodide ion)
- → eq wt of iodine is 1 gram-mol wt 126.90 g. (I₂ : Molecular Weight = 126.90)
- (4) <u>BrO₃⁻ + 6e⁻ → Br-</u>(bromide ion)
 → eq wt of potassium bromate is 1/6 gram-mol wt 27.83 g. (KBrO₃ : 1/6 × 167.01 = 27.83)