Complex Formation

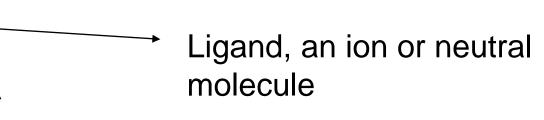
complex ions (also called *coordination ions)*

Bronsted Acids and Bases

acid => proton donor

base => proton acceptor (hydroxide ion donor) Lewis Acids and Bases

<u>acid</u> => electron pair acceptor (<u>metal</u>)


- base => electron pair donor
 (ligand)
- adduct => product of a Lewis
 Acid-Base reaction

<u>coordinate covalent bond</u>=>

both electrons of shared pair contributed by same atom (also called <u>dative</u> bond)

Complexometric Titration

7 Concept

Cation central ion

ionic bond salt or ion pair covalent bond complex ion or compound

- Involves the formation of a soluble but slightly dissociated complex or complex ion.
- Ag + + 2 CN \leftrightarrow Ag(CN)₂ -

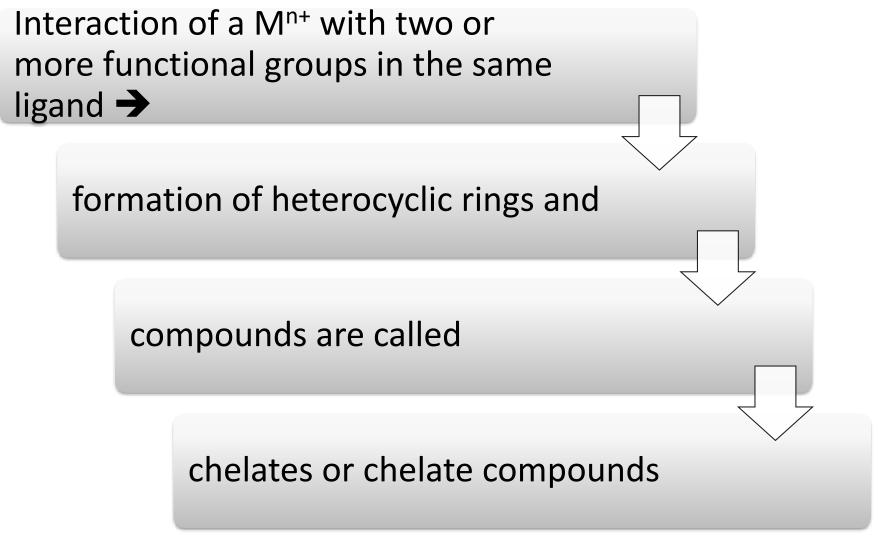
No. of bonds (coordn no of Lewis acid Lewis base the metal)

M – L bond is often *covalent*, but in some cases the interaction may be one of *coulombic attraction*.

- *Non labile* or inert complexes
- undergo substitution reactions very slowly.
- Co²⁺ complexes are labile, while almost all complexes formed by Co³⁺, Cr³⁺ are inert.

Labile complexes

- complexes undergo substitution reactions very rapidly
- Cu $(H_2O)_4^{2+}$ + 4 $NH_3 \Leftrightarrow Cu (NH_3)_4^{2+}$ + $4H_2O$


Effect of pH

Ligands

Ligands generally contain an electronegative atom,

N, O, X, S

NH₃ (one unshared pair of e, unidentate L) NH₂ CH₂ CH₂ NH₂ (ethylen diamine (en)) bidentate L (2 groups → 2 bonds with the M ion)

Analytical applications based on the use of chelating agents have been growing

Stability of complexes

- We will focus on the complexation of Mⁿ⁺ with chelating agents.
- $M + L \leftrightarrow ML$
- 1:1 reaction → sol. Complex
- [ML]
 K = ----- stability or formation const
 [M][L]

Its reciprocal is instability or dissociation constant.

- K~ 10⁸
- The reaction is complete at the equivalence point for a feasible titration

Stepwise Formation Constant

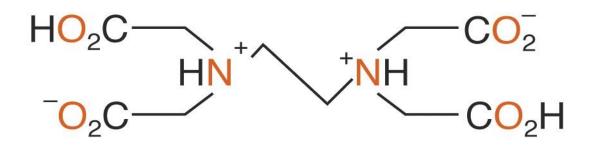
Consider the reaction of NH₄OH with Cu⁺² ions at first, the blue solution turns cloudy with the formation of a pale blue ppt $Cu^{2+} + 2OH^{-} <=>Cu(OH)_{2}$

as the concentration of the NH₄OH increases \rightarrow NH₃ coordinates with Cu⁺² ion \rightarrow blue colour soln Cu²⁺ + NH₃ <=> Cu(NH₃)²⁺ K₁ = 1.9 × 10⁴ Cu(NH₃)²⁺ + NH₃ <=> Cu(NH₃)₂²⁺ K₂ = 3.6 × 10³ Cu(NH₃)₂²⁺ + NH₃ <=> Cu(NH₃)₃²⁺ K₃ = 7.9 × 10² and finally Cu(NH₃)₃²⁺ + NH₃ <=> Cu(NH₃)₄²⁺ K₄ = 1.5 × 10²

Ы
Ū
0
or
Ť
5

	• <u>Overall:</u>
	• $Cu^{2+} + 4 NH_3 <=> Cu(NH_3)_4^{2+}$
	• $K = [Cu(NH_3)_4^{2+}] / [Cu^{2+}][NH_3]^4$
	• = $K_1 K_2 K_3 K_4 = 8.1 \times 10^{12}$
	• Though the value of K is large, this titration is not feasible.
	 There is less tendency for Cu(NH₃)²⁺ to
	 add a second NH₃ than for
	• free Cu ²⁺ to bind the first one.
	 tendency to add NH₃
Moles of ammm per mole of H ₃ O ⁺ or Cu ²⁺	 decreases at each step of the process.

- K~ 10⁸
- The reaction is complete at the equivalence point for a feasible titration
- That is why we prefer chelating agents than simple ligands.

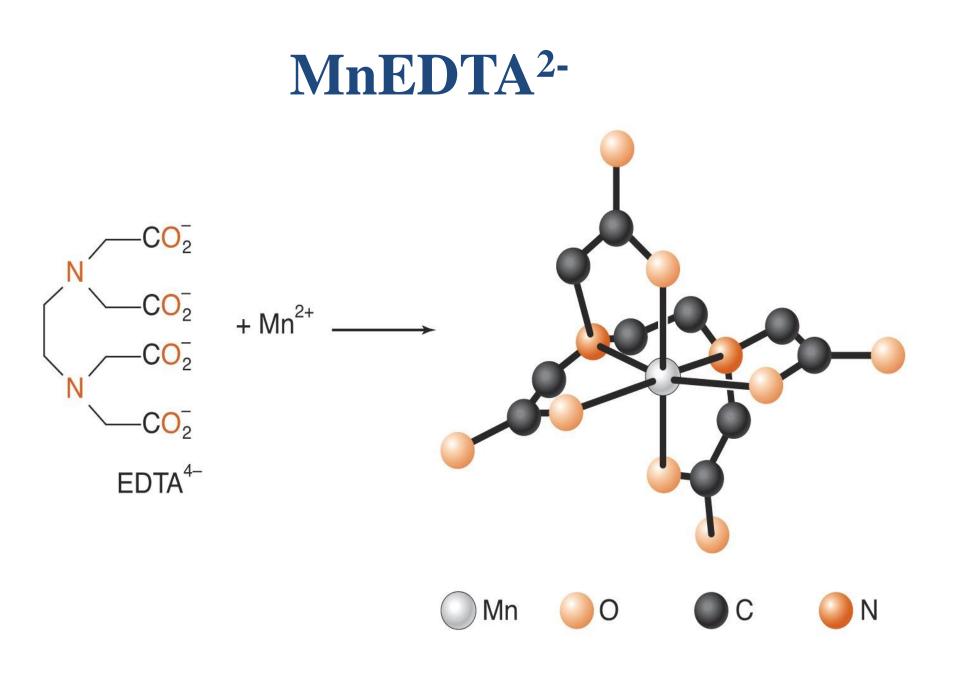

Chelate Effect

- the ability of multidentate ligands to form more stable metal complexes than those formed by similar monodentate ligands
- results from the formation of 5-membered "ring" with M and 2 atoms on the L

Are all kinds of ligands suitable for all the metal cations?

Metal ions such as Cu, Co, Ni, Zn, Cd and Hg form stable complexes with N – ligands (e.g. NH₃ and trien) Metal ions Al, Pb, Bi are better complexed with O – ligands The best is EDTA, it forms stable, H₂O-sol., 1:1 complexes with Mⁿ⁺→ it can be used as a titrant.

EDTA


EDTA

Ethylenediaminetetraacetic acid

(also called ethylenedinitrilotetraacetic acid)

• =>
$$H_4EDTA => H_4Y$$

Since the EDTA contains 6 basic sites – 4 COOH, 2 N – 6 acid species can exist H_6Y^{2+} , H_5Y^+ , H_4Y , H_3Y^- , H_2Y^{2-} , HY^{3-}

EDTA anion \rightarrow EDTA⁴⁻ \rightarrow Y⁴⁻

1+ cation Ag⁺ + Y⁴⁻ \Leftrightarrow AgY³⁻

2+ cation Hg²⁺ + Y^{4−} ⇐> HgY²⁻

3+ cation $Fe^{3+} + Y^{4-} \Leftrightarrow$ FeY^{-} n+ ion Mⁿ⁺ + Y⁴⁻ ⇔ MY⁽⁴⁻ⁿ⁾⁻

Equilibria involved in EDTA titrations

 $M^{n+} + Y^{4-} \Leftrightarrow MY^{(4-n)-}$

The absolute stability or formation const
 [MY⁽⁴⁻ⁿ⁾⁻]

• $K_{abs} = \frac{[MY^{(4-n)-}]}{[M^{n+}][Y^{4-}]}$ stability or formation const

The pH effect :

 $\begin{array}{ll} \mathsf{H}_{4}\mathsf{Y} + \mathsf{H}_{2}\mathsf{O} \Leftrightarrow \mathsf{H}_{3}\mathsf{O}^{+} + \mathsf{H}_{3}\mathsf{Y}^{-} & \mathcal{K}_{a1} = 1.02 \times 10^{-2} \\ \mathsf{H}_{3}\mathsf{Y}^{-} + \mathsf{H}_{2}\mathsf{O} \Leftrightarrow \mathsf{H}_{3}\mathsf{O}^{+} + \mathsf{H}_{2}\mathsf{Y}^{2-} & \mathcal{K}_{a2} = 2.14 \times 10^{-3} \\ \mathsf{H}_{2}\mathsf{Y}^{2-} + \mathsf{H}_{2}\mathsf{O} \Leftrightarrow \mathsf{H}_{3}\mathsf{O}^{+} + \mathsf{H}\mathsf{Y}^{3-} & \mathcal{K}_{a3} = 6.92 \times 10^{-7} \\ \mathsf{H}\mathsf{Y}^{3-} + \mathsf{H}_{2}\mathsf{O} \Leftrightarrow \mathsf{H}_{3}\mathsf{O}^{+} + \mathsf{Y}^{4-} & \mathcal{K}_{a4} = 5.50 \times 10^{-11} \end{array}$

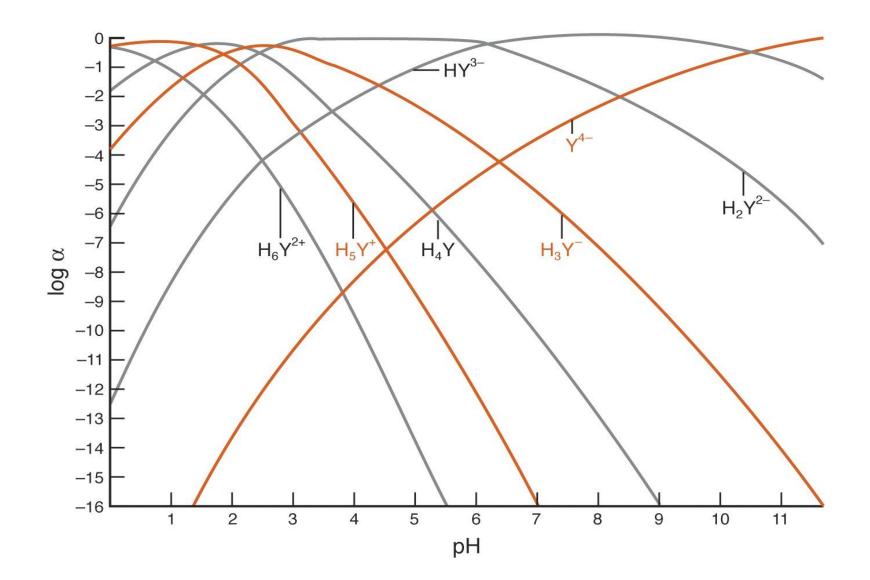
EDTA contains 6 basic sites – 4 COOH, 2 N – → 6 acid species can exist

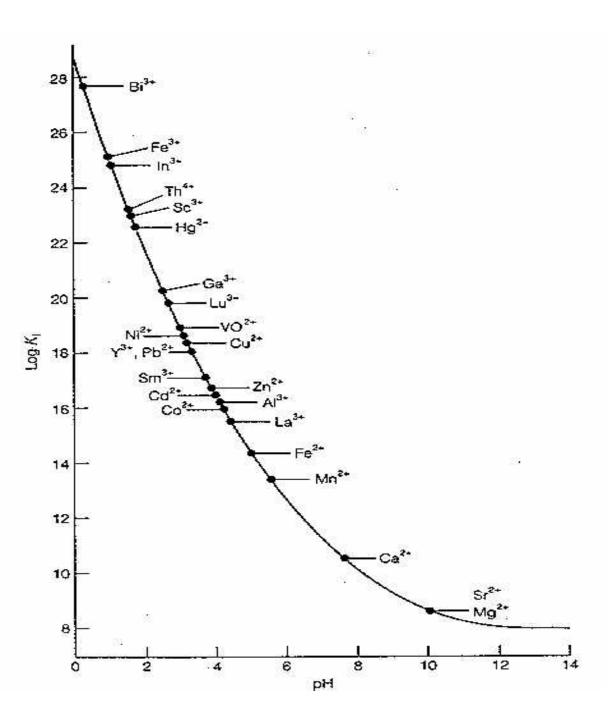

 H₆Y²⁺, H₅Y⁺, H₄Y, H₃Y⁻, H₂Y²⁻, HY³⁻.

- What is the predominant species at pH 12? (Y⁴⁻)
- At lower pH values protonated species
- At pH = 4 H_2Y^{2-}
- $Cu^{2+} + H_2Y^{2-} \iff CuY^{2-} + 2H^+$

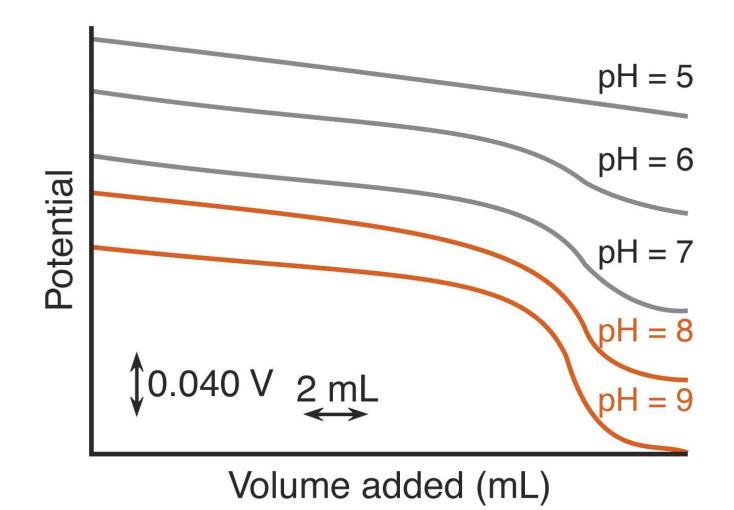
 How can you estimate the value of pH for a complexometric titration?

EDTA


 $K_{abs} = \frac{[MY^{-(4-n)}]}{[M][Y^{4-}]}$ The fraction of EDTA in the Y^{4-} , c_v total concentration of the uncomplexed EDTA $\alpha_4 = ------C_{v}$ Where $C_v = [Y^{4-}] + [HY^{3-}] + [H_2Y^{2-}] + [H_3Y^{-}] + [H_4Y]$ [Y⁴⁻] α₄ = ----- $K_{a1} K_{a2} K_{a3} K_{a4}$ $\alpha_{4} =$ $[H_{3}O^{+}]^{4}+[H_{3}O^{+}]^{3}K_{a1}+[H_{3}O^{+}]^{2}K_{a1}K_{a2}+[H_{3}O^{+}]K_{a1}K_{a2}K_{a3}+K_{a1}K_{a2}K_{a3}K_{a4}$ $[Y^{4-}] = \alpha_4 c_v$

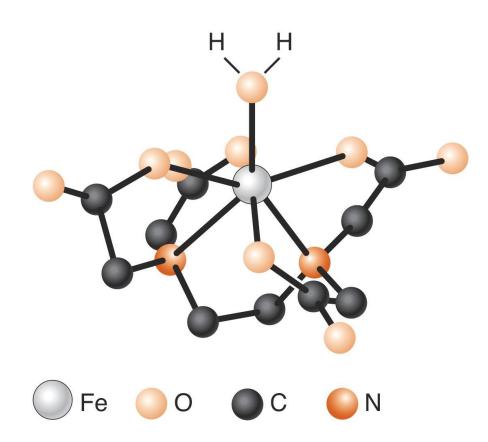

- *K_{eff}* is more important than *K_{abs}*
- It shows the actual tendency to form the metal complex at the pH value in question
- It can be estimated from values of K_{eff} , α_4 in tables of constants.

•	as the pH goes down, α_4 becomes smaller and K_{eff} becomes smaller.	Table 13-1Values of φEDTA at 20°C and μ =	and the star when the second second
•	At pH>12 (EDTA is completely	pH	$\alpha_{Y^{4-}}$
	dissociated)	0	1.3×10^{-23}
•	$\alpha_4 \sim 1, \qquad K_{eff} \sim K_{abs}$	1	1.9×10^{-18}
		2	3.3×10^{-14}
•	<u>In EDTA titrations</u> , M ⁿ⁺ solutions	3	2.6×10^{-11}
	are buffered 🗲 pH is const.	4	3.8×10^{-9}
	•	5	3.7×10^{-7}
•	At high pH values many M ⁿ⁺	6	2.3×10^{-5}
	tend to hydrolyse and even \rightarrow	7	5.0×10^{-4}
		8	5.6×10^{-3}
	hydroxides	9	5.4×10^{-2}
•	M ⁿ⁺ concentration is kept as	10	0.36
	· · · ·	11	0.85
	low as	12	0.98
•	0.010 - 0.0010 M to decrease	13	1.00
		14	1.00
	the chance of precipitation.		


Fractional Composition Diagram for EDTA

Minimum pH for Effective EDTA Titrations

Titration of Ca⁺² at various pHs


Table 13-2	Formation constants for metal-EDTA complexes
------------	--

Ion	$\log K_{\rm f}$	Ion	$\log K_{\rm f}$	Ion	log K _f
Li ⁺	2.79	Mn ³⁺	25.3 (25°C)	Ce ³⁺	15.98
Na^+	1.66	Fe ³⁺	25.1	Pr^{3+}	16.40
\mathbf{K}^+	0.8	Co^{3+}	41.4 (25°C)	Nd ³⁺	16.61
Be ²⁺	9.2	Zr ⁴⁺	29.5	Pm ³⁺	17.0
Mg^{2+}	8.79	Hf^{4+}	29.5 ($\mu = 0.2$)	Sm ³⁺	17.14
Ca^{2+}	10.69	VO^{2+}	18.8	Eu ³⁺	17.35
Sr ²⁺	8.73	VO_2^+	15.55	Gd^{3+}	17.37
Ba ²⁺	7.86	Ag ⁺	7.32	Tb^{3+}	17.93
Ra^{2+}	7.1	Tl ⁺	6.54	Dy ³⁺	18.30
Sc^{3+}	23.1	Pd^{2+}	18.5 (25°C,	Ho^{3+}	18.62
Y^{3+}	18.09		$\mu = 0.2)$	Er ³⁺	18.85
La^{3+}	15.50	Zn^{2+}	16.50	Tm^{3+}	19.32
V^{2+}	12.7	Cd^{2+}	16.46	Yb ³⁺	19.51
Cr^{2+}	13.6	Hg ²⁺	21.7	Lu ³⁺	19.83
Mn^{2+}	13.87	Sn ²⁺	18.3 ($\mu = 0$)	Am ³⁺	17.8 (25°C)
Fe ²⁺	14.32	Pb^{2+}	18.04	Cm^{3+}	18.1 (25°C)
Co^{2+}	16.31	Al ³⁺	16.3	Bk ³⁺	18.5 (25°C)
Ni^{2+}	18.62	Ga ³⁺	20.3	Cf^{3+}	18.7 (25°C)
Cu^{2+}	18.80	In ³⁺	25.0	Th^{4+}	23.2
Ti ³⁺	21.3 (25°C)	T1 ³⁺	37.8 ($\mu = 1.0$)	U^{4+}	25.8
V^{3+}	26.0	Bi ³⁺	27.8	Np^{4+}	24.6 (25°C, $\mu = 1.0$)
Cr ³⁺	23.4			0.558	

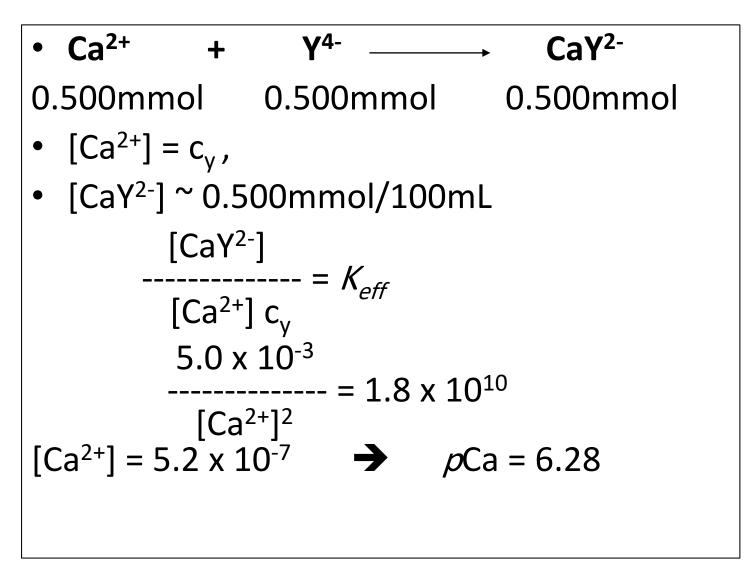
NOTE: The formation constant is the equilibrium constant for the reaction $M^{n+} + Y^{4-} \rightleftharpoons MY^{n-4}$. Values in table apply at 20°C, and ionic strength 0.1 M, unless otherwise noted.

SOURCE: A. E. Martell and R. M. Smith, *Critical Stability Constants*, Vol. 1 (New York: Plenum Press, 1974), pp. 204–211.

7-Coordinate [Fe^{III}EDTA H₂O]⁻¹

 50.0 mL of a solution which is 0.0100 *M* in Ca²⁺ and buffered at pH 10.0 is titrated with 0.0100 *M* EDTA solution. Calculate values of *p*Ca at various stages of the titration and plot the titration curve.

- K_{abs} CaY²⁻ is 5.0 x 10¹⁰, α_4 at *p*H 10.0 is 0.35 \clubsuit
- $K_{eff} = 5.0 \times 10^{10} \times 0.35 = 1.8 \times 10^{10}$

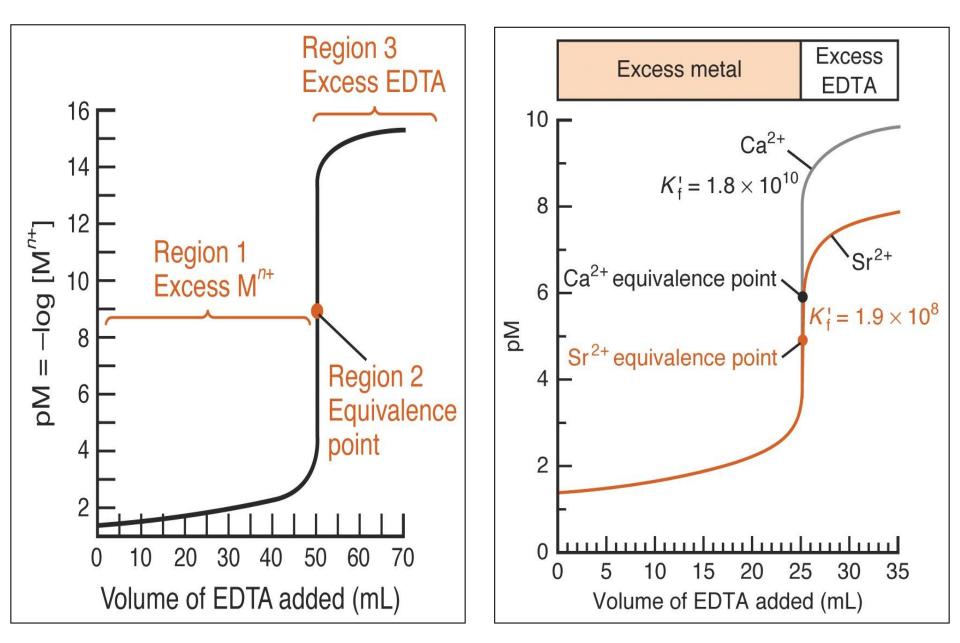

(1) Start of titration

- [Ca²⁺] = 0.0100 mmol/mL
- $pCa = -log [Ca^{2+}] = 2.00$

(2) After addn of 10.0 mL of titrant

- Start Ca²⁺
- 50.0 mL x 0.0100 mmol/mL
- EDTA 10.0 mL , 0.0100 mmol/mL
- 10.0 mL reacted, 40.0 mL remained
- 40.0 mLx0.0100 mmol/mL = 60.0 x M
- [Ca²⁺] = 0.0067 *M*

(3) Equivalence point



(4) After addn of 60.0 mL of titrant

- 0.100 mmol EDTA, 0.500 mmol [CaY²⁻]
- cy = 0.100 mol /110 mL = 9.1 x 10⁻⁴ M
- [CaY²⁻] = 0.500 mmol/ 110 mL

• = 4.55 x 10⁻³ M
[CaY²⁻]
------ =
$$K_{eff}$$

[Ca²⁺] c_y
[Ca²⁺] = 2.8 x 10⁻¹⁰ M \rightarrow pCa = 9.55

Three Regions of EDTA Titration

<u>Masking</u>

- Ni²⁺ forms stable cyanide complex [Ni(CN)₄]²⁻
- Pb²⁺ does not .
- Mixture (Pb²⁺ +Ni²⁺), in the presence of CN⁻,
- Pb²⁺ can be titrated against EDTA without interference from Ni²⁺

- With certain Mⁿ⁺ that hydrolyse readily, it may be necessary to add complexing ligands → preventing pptn of M(OH)_n
- Acetate or ammonia

Hydrolysis effect

- Hydrolysis may compete with the complexometric titration.
- Extensive hydrolysis → pptn of hydroxides, which reacts slowly with EDTA
- Pptn can be a sort of masking
- e.g. at pH=10, Ca²⁺, Mg²⁺ are complexed with EDTA
- At pH>12 \rightarrow Mg(OH)₂ ppt \rightarrow Ca²⁺ is only complexed

Metal Ion Indicators


- The most common technique to detect the e. p. in EDTA titrations is to use a metal ion indicator.
- are compounds whose colour changes when they bind to a metal ion.
 M In *must be less strongly than* M EDTA.

 $\begin{array}{ccc} MgIn + EDTA \rightarrow MgEDTA + In \\ Red & Colorless & Colorless & Blue \end{array}$

In a direct titration,

✓ Mⁿ⁺ is titrated with standard EDTA.

✓ The Mⁿ⁺ is buffered to a pH at which the K_{eff} for the M-EDTA complex is large and the color of the In_{free} is different from that of the M-In complex.

EDTA indicators

- Eriochrome Black T (EBT), loss of H⁺ from phenolic OH, O⁻ and azo gp
- $H_2 ln^- + H_2 O \Leftrightarrow H ln^{2-} + H_3 O^+$
- red blue
- pK_a = 6.3
- In³⁻ yellowish-orange
- At pH 8-10, EDTA titrn, → blue HIn²⁻ which forms 1:1 wine red complexes with many cations e.g. Mg ²⁺, Ca ²⁺, Zn²⁺ and Ni²⁺
- *EBT* is <u>unstable</u> in solution, it must be freshly prepared
- Calmagite is stable in aq. Soln H₃In
- H₂In⁻ red, HIn²⁻ blue, In³⁻ reddish orange

Name	Structure	р <i>К</i> а	Color of free indicator	Color of meta ion complex
Calmagite	$\bigcup_{CH_3}^{OH} HO + SO_3^-$	$pK_2 = 8.1$ $pK_3 = 12.4$	H_2In^- red HIn^{2-} blue In^{3-} orange	Wine red
Eriochrome black T	$-O_{3}S - OH $	$pK_2 = 6.3$ $pK_3 = 11.6$	H_2In^- red HIn^{2-} blue In^{3-} orange	Wine red
Murexide	$ \begin{array}{c} $	$pK_2 = 9.2$ $pK_3 = 10.9$	H_4In^- red-violet H_3In^{2-} violet H_2In^{3-} blue	Yellow (with Co^{2+} , Ni^{2+} , Cu^{2+}); red with Ca^{2+}

Table 12-3 Common metal ion indicators

PREPARATION AND STABILITY:

Calmagite: 0.05 g/100 mL H₂O; solution is stable for a year in the dark.

Eriochrome black T: Dissolve 0.1 g of the solid in 7.5 mL of triethanolamine plus 2.5 mL of absolute ethanol; solution is stable for months; best used for titrations above pH 6.5.

Murexide: Grind 10 mg of murexide with 5 g of reagent NaCl in a clean mortar; use 0.2–0.4 g of the mixture for each titration.

Xylenol orange: 0.5 g/100 mL H₂O; solution is stable indefinitely.

Pyrocatechol violet: 0.1 g/100 mL; solution is stable for several weeks.

Table 12-3 part 1 Quantitative Chemical Analysis, Seventh Edition © 2007 W. H. Freeman and Company

Name	Structure	р <i>К</i> _а	Color of free indicator	Color of metal ion complex
Xylenol orange	$\stackrel{-O_2C}{\longrightarrow} \stackrel{O_1}{\longrightarrow} \stackrel{CH_3}{\longrightarrow} \stackrel{CH_3}{\longrightarrow} \stackrel{OH}{\longrightarrow} \stackrel{CO_2}{\longrightarrow} \stackrel{O_2C}{\longrightarrow} \stackrel{HNH}{\longrightarrow} \stackrel{CO_2}{\longrightarrow} \stackrel{OO_2}{\longrightarrow} \stackrel$	$pK_2 = 2.32$ $pK_3 = 2.85$ $pK_4 = 6.70$ $pK_5 = 10.47$ $pK_6 = 12.23$	H_5In^- yellow H_4In^{2-} yellow H_3In^{3-} yellow H_2In^{4-} violet HIn^{5-} violet In^{6-} violet	Red
Pyrocatechol violet	OH O	$pK_1 = 0.2$ $pK_2 = 7.8$ $pK_3 = 9.8$ $pK_4 = 11.7$	H_4In red H_3In^- yellow H_2In^{2-} violet HIn^{3-} red-purple	Blue

Table 12-3 Common metal ion indicators

PREPARATION AND STABILITY:

Calmagite: 0.05 g/100 mL H_2O ; solution is stable for a year in the dark.

Eriochrome black T: Dissolve 0.1 g of the solid in 7.5 mL of triethanolamine plus 2.5 mL of absolute ethanol; solution is stable for months; best used for titrations above pH 6.5.

Murexide: Grind 10 mg of murexide with 5 g of reagent NaCl in a clean mortar; use 0.2–0.4 g of the mixture for each titration.

Xylenol orange: 0.5 g/100 mL H₂O; solution is stable indefinitely.

Pyrocatechol violet: 0.1 g/100 mL; solution is stable for several weeks.

Table 12-3 part 2 Quantitative Chemical Analysis, Seventh Edition © 2007 W. H. Freeman and Company

EDTA titration techniques

- Direct titration:
- Back titration:
- Displacement titration:
- Indirect titration:
- Masking agent:

Application of EDTA titrations

- <u>1- Direct</u>
- Complexing agents, citrate and tartarate, are added to prevent pptn of hydroxides
- NH₃-NH₄Cl buffer (pH 9-10) is used for Mⁿ⁺ which forms complexes with ammonia

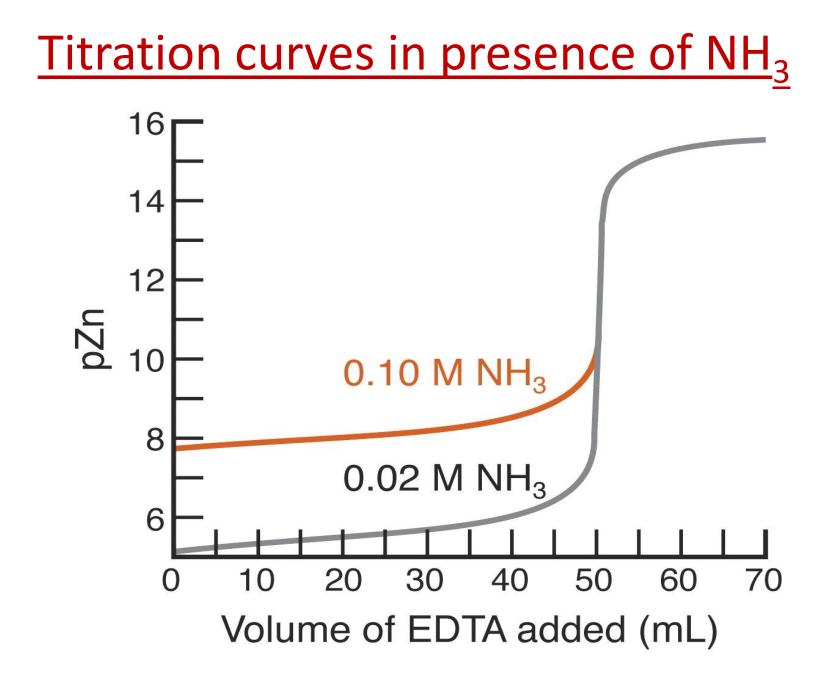
Detmn of total hardness of water

- Ca²⁺ In complex is too weak (for a proper colour change) compared to Mg²⁺ In, pH10.
- If the sample does not contain Mg²⁺
- Add Mg²⁺ to EDTA → titrant (pH 10) MgY²⁻ + Y⁴⁻
- Add to Ca²⁺ soln → CaY²⁻ (more stable) + Mg²⁺ (free to react with In → red colour)
- At e.p. no Ca²⁺, additional titrant → MgIn⁻ to MgY²⁻ → HIn²⁻ (blue)

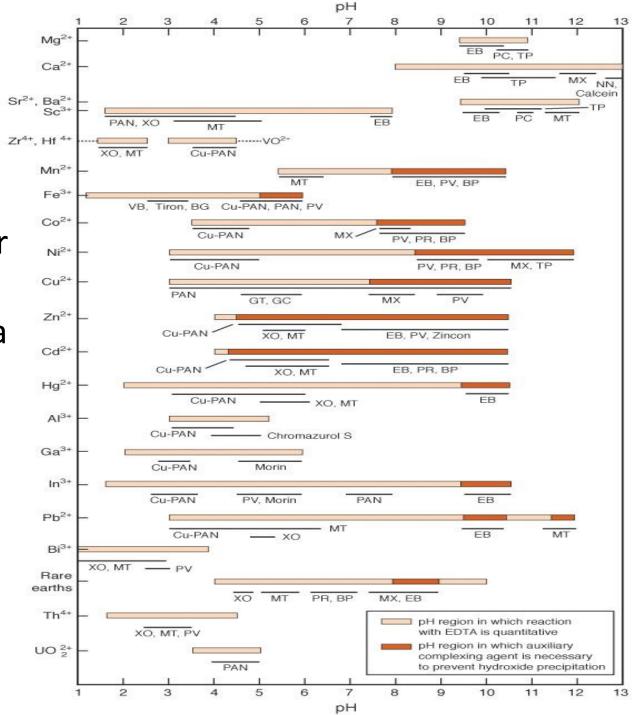
- Hardness is the total concentration of alkaline earth (Group 2) ions (mainly Ca²⁺ and Mg²⁺), in water.
- Hardness is commonly expressed as the equivalent number of milligrams of CaCO₃ per liter.
- Thus, if [Ca²⁺] & [Mg²⁺] = 1 mM, we would say that the hardness is 100 mg CaCO₃ per liter because 100 mg CaCO₃ = 1 mmol CaCO₃.
- Water of hardness less than 60 mg CaCO₃ per liter is considered to be "soft."
- If the hardness is above 270 mg/L, the water is considered to be "hard."
- Hard water reacts with soap to form insoluble curds.

 $Ca^{2+} + 2RCO_2^- \rightarrow Ca(RCO_2)_2(s)$ Soap Precipitate R is a long-chain hydrocarbon such as $C_{17}H_{35}$ -

- Titration with EDTA at pH 10 in NH₃ buffer then gives the total concentrations of Ca²⁺ and Mg²⁺.
- Ca²⁺ can be determined separately if the titration is carried out at pH 13 without ammonia.
- At this pH, Mg(OH)₂ precipitates and is inaccessible to EDTA.
- Interference by many metal ions can be reduced by the right choice of indicators.


- Mⁿ⁺ + EDTA → slow reaction or when a suitable ind is not available.
- Mⁿ⁺ + excess EDTA → Vrem titrate against Mg²⁺ ind EBT or calmagite
- It can be used for the determin of Mⁿ⁺ in ppts, e.g. Pb²⁺ in lead sulphate and Ca²⁺ in CaC₂O₄ (oxalate)

<u> 3- Replacement</u>	<u>4- Indirect</u>
 No suitable ind An excess of a Mg²⁺ – EDTA soln is added → M²⁺ displaces Mg²⁺ from the relatively weak EDTA complex M²⁺ + MgY²⁻ ⇔ MY²⁻ + Mg²⁺ (titrate against EDTA) 	• SO_4^{2-} + excess Ba^{2+} • $BaSO_4$ + Ba^{2+} • $MgNH_4PO_4 \Leftrightarrow Mg^{2+}$ + $NH_4PO_4^{2-}$ EDTA \rightarrow detn of PO_4^{3-}


Selectivity in EDTA titrn

- Adjusting pH → degree of selectivity
- Some Mⁿ⁺ form stable complexes at lower pH values, while others do not.
- e.g. Fe (III) is complexed with EDTA at pH 2 in the presence of Fe (II)

- Ni (II) is complexed at pH 3.5 in the presence of alkaline earth cations.
- Interference will occur at pH 10 in an amm buffer

Guide to EDTA titrations, light color, pH range for quantitative analysis, dark area where ammonia must be present

