

A)Monoazanapthalenes (Quinoline and Isoquinoline)

1-Skraup reaction:

Consists of heating of primary aromatic amines (ArNH₂) e.g.aniline with glycerol, in nitrobenzene (as solvent and oxidizing agent), in presence of c.H₂SO₄(as catalyst) and few crystals of FeSO₄ (to make the reaction less violent).

If a strong o/p-directing group is present in the m-position e.g.-OCH₃ ,then the 7-substituted quinoline is formed.

If weakly o/p- directing group is present e.g.Cl,then both 5-and 7- substituted quinolines are formed.

If substitution is m-directing ,the predominant product is the 5-substituted quinoline.

2- Doebner - Miller reaction:

In this case α,β -unsaturated aldehydes or ketones are used in place of glycerol,thus,there is therefore a greater variation in the possible substitution pattern and HCl or ZCl₂ is used as a catalyst.Also,primary aromatic amines are used.

We also can use o-,m-,and p-substituted anilines.

3-Doebner reaction:

Formation of substituted cinchoninic acid from aromatic amines on heating with aldehydes and pyruvic acid.

We also can use o-,m-,and p-substituted anilines

4- Combes reaction:

Condensation of ArNH₂ with 1,3-dicarbonyl compounds (β -ketoesters or β -diketones).

or diethyl malonate

5-Pfitzinger reaction:

Condensation of acylketones with isatin, then after hydrolysis yield quinoline-4-carboxylic acid.

6-Riehm reaction:

Formation of quinoline derivatives by prolonged heating of primary arylamine hydrochlorides with ketones with or without use of $AlCl_3$ or PCl_5 (Lewis acid catalyst).

7-Friedlander synthesis :

Such a reaction in which an o-aminoaldehydes or o-aminoketones can be cyclised by reaction with an α -methylenealdehyde or α -methyleneketone or a related compounds in the presence of a base .Its synthetic used is limited by the difficulty in preparing the o-aminocarbonyl compounds.

The following o-aminoaldehydes and o-aminoketones can be used for preparation of quinoline derivatives.

Quinoline derivatives can be prepared by reacting ethyl acetoacetate ,ethyl benzoylacetate ,acetylacetone and dibenzoylmethane with the above oaminoaldehydes or o-aminoketones and dicyanomethane (malononitrile).

2-Cyanoaniline can be used for preparation of quinoline derivatives using the same reactants under the same conditions.

A useful modification is the reaction of an o-nitrocarbonyl compounds with activated methylene and subsequent reduction of the nitro group as shown above and below.

diethyl 2-oxosuccinate

Other methods :

Gabriel-Colmann rearrangement :

Formation of isoquinoline derivatives by the action of EtONa Phalimidoacetic ester.

Also,

Reactions with quinoline :

a-Oxidation:

Quinoline is resistant to oxidizing agents , but vigorous oxidation with $KMnO_4$ yields quinolinic acid.

pyridine-2,3-dicarboxylic acid

Reactivity of methyl groups in quinoline and iso quinoline.

The reactivity of methyl groups in the 2- and 4- positions are typical of these azines and their benzo derivatives.

Also, it has been found that, 4-methylquioline and 2-methylquinazoline are reactive. Also , the methyl group at C-1 in isoquinoline is active.

c-Electrophilic substitution:

Quinoline undergoes electrophilic substitution ,.e.g.nitration , sulphontion and halogenations .As the nitrogen atom deactivates the pyridine ring , electrophilic substitution occurs in the benzene ring (at position-5 and 8).Position -8 is more preferred.

