2)Quinazoline

Similarly,2-aminoacetophenone and 2-aminobenzophenone can be used.

From anthranilonitrile

Both of 2-fluoroacetophenone and 2-fluorobenzophenone Can be used for preparation of quinazoline derivatives.

Nucleophilic substitutions:

The nucleopholic displacement of the halogen from 4-halogenoquinazolines occurs readily in the presence of strong nucleophiles .

Similar reactions occur with 2-halogenoquinazolines, but the 4-substituted compounds are the more reactive.

Positions of electrophilic and nucleophilic attack:

Thus,nucleophilic substitution may be occur at C-2,C-4 and electrophilic substitution may be occur at C-6.

Thus, nucleophilic substitution occurs at C-4 better than C-2.

Nucleophilic additions:

By analogy of these observations, it might be anticipated that other nucleophilic reagents will attack the 4-position in quinazoline, particularly in cases where preliminary coordination of the reagents to the 3-position can occur. This is observe, with hydrogen cyanide, bisulphate ions and carbanions, all giving substituted 3,4-dihydroquinazolines.

sodium 3,4-dihydroquinazoline-4-sulfonate

Electrophilic substitutions:

In very strongly acid solutions, quinazoline is largly converted to the direction A either this or the anhydrous cation B is present when quinazoline is nitrated ,since no oxidation occurs and 6-nitroquinazoline is formed.

Electrophilic substitution may be occur at C-6.

This is in contrast to quinoline and isoquinoline which both nitrate preferentially in the (5- and 8-) positions.

Also,

Reactivity of methyl groups at C-2 and C-4:

The reactivity of methyl groups in the 2- and 4- positions are typical of these azines and their benzo derivatives.

Also, it has been found that, 4-methylquinazoline is more reactive than 2-methylquinazoline.