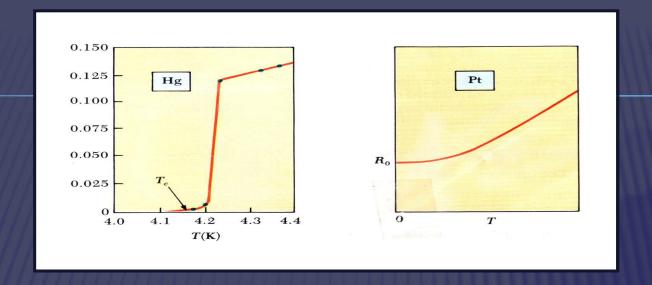


Methods of Experimental Physics (311 Ph)

Prof. Dr. Mortady I. Youssif

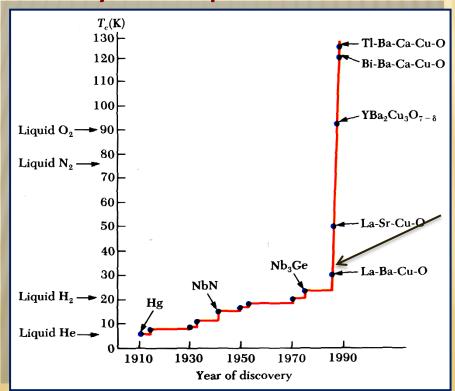
Professor of Physics
Physics Department, Faculty of Science,
Demiatta University


2020

Out line

- Brief Historical Review
- Type I Superconductor
- Type II Superconductor
- > High Temperature Superconductivity
- > Applications using Superconductors
- Conclusion

- **❖** The era of low temperature physics began in 1908 when the Dutch physicist H.K. Onnes first liquefied helium, which has boiling temperature of only 4.2 K.
- ❖ In 1911, Onnes and one of his assistants discovered the phenomenon of superconductivity while studying the resistivity of metals at low temperatures.
- **❖** They found that the resistivity, when extrapolated to 0 K, depended on the purity of the sample. Then they have decided to study mercury and fount that the resistance of the Hg sample dropped sharply at 4.15 K to unmeasurably small value. They name this new phenomenon of perfect conductivity, superconductivity.
- ❖ In 1913, Onnes was awarded the Noble prize in physics.
- ***** We now know that the resistivity of a superconductor is truly zero.


 \clubsuit Many other elemental metals were found to exhibit zero resistance when the temperature was lowered below the critical temperature, T_c

Be 0.03											В	С
Mg											Al 1.18	Si
Ca	Sc	Ti 0.4	V 5.4	Cr	Mn	Fe	Co	Ni	Cu	Zn 0.85	Ga 1.08	Ge
Sr	Y	Zr 0.81	Nb 9.25	Mo 0.92	Tc 7.8	Ru 0.49	Rh	Pd	Ag	Cd 0.52	In 3.4	Sn 3.72
Ba	La 6.0	Hf 0.13	Ta 4.47	W 0.02	Re 1.70	Os 0.66	Ir	Pt	Au	Hg 4.15	T1 2.38	Pb 7.19
Ra	Ac	Th 1.38	Pa 1.4	U 0.25								

- \square In 1933, Meissner and Ochsenfeld studied the magnetic behavior of superconductors in the presence of a magnetic field and found that the magnetic flux is expelled from the interior of the superconductor when it cooled below T_c .
- ☐ In 1935, Fritz and Heinz London developed a phenomenological theory of superconductivity.
- ☐ In 1957, Bardeen, Cooper and Schrieffer (BCS-theory) explained the actual nature and origin of the superconducting state. A central feature of this theory is the formation of bound two-electron states called cooper pairs.
- ☐ In 1962, Brian D. Josephson predicted a tunneling current between two superconductors separated by a thin (< 2mm) insulating barrier, where the current is carried by these paired electrons (Josephson effect).
- Early in 1986, J. Georg Bednorz and Karl Alex Muller reported evidence for superconductivity in an oxide of lanthanum, barium, and copper at a temperature of about 30 K. This was a major breakthrough in superconductivity which marks the beginning of a new era of High-Temperature Superconductivity since the highest known value of T_c at that time was about 23 K in a compound of niobium and germanium.

- Recently, researchers have reported critical temperature as high as 125 K in more complex metallic oxides, but the mechanisms responsible for superconductivity in these materials remain unclear up till now.
- ☐ In 1987, Bednorz and Muller were awarded the Noble prize in physics.
- \Box If superconductors with T_c 's above room temperature are ever found, human technology will be drastically altered.

History of superconductivity

