Typel Superconductor

- \triangleright Many of the elemental metals were found to exhibit zero dc resistance at $T < T_c$
- > The critical temperatures of some superconducting materials, classified as type I superconductors, are given in the following Table.

Superconductor	$T_{c}\left(\mathbf{K}\right)$	B _c (0) in Tesla
Al	1.196	0.0105
Ga	1.083	0.0058
$\mathbf{H}_{\mathbf{g}}$	4.153	0.0411
In	3.408	0.0281
Nb	9.26	0.1991
Pb	7.193	0.0803
Sn	3.722	0.0305
Ta	4.47	0.0829
Ti	0.39	0.010
V	5.30	0.1023
\mathbf{w}	0.015	0.000115
Zn	0.85	0.0054

□ As we can see that, Copper (Cu), silver (Ag), and gold (Au), which are excellent conductors, do not exhibit superconductivity.
□ We can also notice that, values for the critical field B_c for type I superconductors are quite low, less than 0.2 T as shown in the Table.
□ For this reason, Type I superconductors cannot be used to construct high-field magnets, called superconducting magnets.

• The critical magnetic field varies with temperature according to the following approximate expression:

$$B_{c}(T) = B_{c}(O) \left[I - \left(\frac{T}{T_{c}}\right)^{2} \right]$$

The value of $B_c(\theta)$ is found by determining B_c at some finite temperature, and extrapolating back to θ K, which cannot be achieved.

Magnetic properties of Type I Superconductor

In 1933, Meissner and Ochsenfeld discovered that when a metal becomes superconducting in the presence of a weak magnetic field, the field lines are spontaneously expelled from the interior of the superconductor, by the induction of surface currents, so that B = 0 everywhere interior (Meissner effect).

- > Type I Superconductor has the important property of:
- \triangleright Zero dc Resistance (R = 0)
- \triangleright Perfect Diamagnet (B = 0).

> Demnstration of the Meissner effect is the Magnetic Levitation.

MEISSNER EFFECT

 \circ Penetration Depth, due to the formation of surface currents within thin layer (10 ~ 100 nm), the magnetic field B inside a type I superconductor is:

$$B(x)=B_0 e^{-x/\lambda}$$

X: is the distance from the surface, and λ : is the penetration depth (~ 10-100 nm), B_0 : is the value of the magnetic field at the surface.

The penetration depth varies with temperature according to the empirical expression:

$$\lambda(T) = \lambda_0 \left[I - \left(\frac{T}{T_c} \right)^2 \right]^{-1}$$

 λ_0 : is the penetration depth at T=0 K.

***** Magnetization, when a bulk sample is placed in an external magnetic field B, the sample acquires magnetization M. The magnetic field B_{in} inside the sample is:

$$B_{in} = B + \mu_0 M$$

• When the sample is in superconducting state, B_{in} = 0; therefore the magnetization is given by:

$$M = -\frac{B}{\mu_O} = \chi_B$$

where $\chi = -1/\mu_0$, is the magnetic susceptibility.

• Therefore, a type I superconductor exhibits perfect diamagnetism, which is an essential property of the superconducting state.

Superconductive Elements

