

- * By the 1950, it was established another class of superconductors known as type II superconductors.
- These materials are characterized by two critical magnetic fields, designated as B_{c1} and B_{c2},

- * At the applied field $B < B_{c1}$, the material is entirely superconducting and there is no flux penetration, just as in case of type I superconductors.
- * At $B > B_{c2}$, the flux penetrates entirely and the superconducting state is destroyed like in type I materials.
- ✤ For B_{c1} < B < B_{c2}, the material is in a mixed state referred to as the Vortex state.
- In the Vortex State, the material can have zero resistance and has partial flux penetration.

U. Essmann and H. Trauble Max-Planck Institute, Stuttgart Physics Letters 24A, 526 (1967)

Magneto-optical image of Vortex lattice, 2001 P.E. Goa et al. University of Oslo Supercond. Sci. Technol. 14, 729 (2001)

Scanning SQUID Microscopy of half-integer vortex, 1996 J. R. Kirtley et al. I<u>BM Thomas J. Watson Research Center</u> <u>Phys. Rev. Lett. 76, 1336 (1996)</u>

□ The Vortex regions are essentially filaments of normal material that run through the sample oriented parallel to the external magnetic field.

- □ As the strength of the applied field B increases the number of filaments increases until the field reaches the upper critical value B_{c2}, and the sample becomes normal.
- One can view the Vortex State as a cylinder swirl of supercurrents surrounding a cylindrical normal material core, which allows some flux to penetrate the interior of the type II superconductor.

- **Δ** Associated with each vortex filament is magnetic field, which is greatest at the core center and falls of exponentially out side the core with the characteristic penetration depth λ .
- □ The supercurrents are the "source" of **B** for each vortex.
- □ Type II superconductors are compounds formed from elements of the transition and actinide series.
- □ The values of the critical fields B_{c2} are very large compared to the values of B_c for type I superconductors, as shown in the following Table.

Superconductor	T _c	B _{c2} (0) in Tasla
Nb ₃ Al	18.7	32.4
Nb ₃ Sn	18.0	24.5
Nb ₃ Ge	23	38
NbN	15.7	15.3
NbTi	9.3	15
Nb ₃ (AlGe)	21	44
V ₃ Si	16.9	23.5
V ₃ Ga	14.8	20.8
PbMoS	14.4	60

- □ For example, the upper critical field for the alloy Nb3(AlGe) is $B_{c2} = 44$ T, and its critical temperature is $T_c = 21$ K. For this reason, type II superconductors are well suited for constructing high-field superconducting magnets.
- □ For example, using the alloy NbTi, superconducting solenoids may be wound to produce and sustain magnetic fields in the range of 5 to 10 T with no power consumption. Iron core electromagnets rarely exceed 2T with much higher power consumption.
- Plots of B_{c2} vs. T, and the three-dimensional plot of T_c with both B_{c2} and critical current density, J_c, for several type II superconductors.

The Figure below shows the magnetic behavior of a type II superconductor.
(a) Plot of the internal field B_{in} versus the applied field B. (b) Plot of the magnetization M versus the applied field B.

- When a type II superconductor is in the mixed state, sufficiently large currents can lead to a motion of vortices perpendicular to the direction of the current.
- This vortex motion corresponds to a change in flux with time, and produces resistance in the material.
- **by adding impurities** or other special inclusions, one can effectively pin the vortices and prevent their motion, to produce zero resistance for the mixed state of the superconductor.

- Coherence Length, ξ, is an important parameter associated with superconductivity. One can think of the coherence length as the smaller dimension over which superconductivity can be established or destroyed.
- Alternatively, one can view the coherence length as the distance over which the electrons in a cooper pair remain together.
- * Typical values of the penetration depth λ and ξ at T = 0 K for selected superconductor are given in the following Table:

Superconductor	λ (nm)	ξ (nm)
AL	16	160
Cd	110	760
Pb	37	83
Nb	39	38
Sn	34	23

According to Ginzburg-Landau (G-L) Theory :

* If $\xi > \lambda$, the superconductor will be type I. Most pure metals fall into this category.

* On the other hand, if $\xi < \lambda$, the material is a type (II) superconductors.