

Third Year Stats. & Comp. Damietta University Stochastic Process Faculty of Science Date: Sunday 22-3-2020 Department of Mathematics Time: 2 hours, from 10 to 12.

Lecture # 6 Discrete-Time Markov Chains Topic: Classification of States

- \blacksquare You should know
- 1-how to classify the states of discrete MC,
- 2-the properties of the two relations: $i \rightarrow j$ & $i \leftrightarrow j$,
- 3-and understood the concept of each of: Accessible state communicate and communicating class- closed set**-** irreducible MC- absorbing state- reflecting state- period, periodic and aperiodic state- transient state- recurrent state- mean recurrence time- null recurrent state- positive recurrent state- ergodic MC.

Prof. Dr. M A El-Shehawey

Lecture # 6 Classification of States

 The main interest in **Markov Chain** (MC) is to obtain the limiting probability that the state will be in *j* given that the limiting probability that the state will be in *j* given that initial state is in *i*, that is what is $\lim_{n \to \infty} Pr(X_n = j | X_0 = i)$?

The limiting probability does not always exit, but it exists when the transition probability matrix (TPM) of a MC satisfies certain properties.

 To understand the *n*-step transition in more detail, we need to study how mathematicians classify the states of a MC. States of MC's are classified by the digraph representation (Some time omitting the actual probability values).

Basic Concepts

The following concepts are very importance.

- **Def (1) (**Path**):** Given two states *i* and *j*, a **path** from *i* to *j* is a sequence of states, where each transition has a positive probability of occurring.
- **Def (2) (**Reachable**):** A state *j* is called **reachable** (or **accessible**) from state *i* iff $p_i^{(n)} > 0$ $p_i^{(n)} > 0$ for some $n \ge 0$, i.e., if there is a path leading from *i* to *j*. Write $i \rightarrow j$.

• **Def (3) (**Communicate**):** Two states *i* and *j* are said to **communicate** iff *j* is reachable from *i*, and *i* is reachable from *j* (i.e., the states *i* and *j* are accessible from each other; that is there exists two integers *n* and *m* such that $p_i^{(n)} > 0$ $p_{_{ij}}^{^{(n)}}$ $>$ and $p_{ii}^{(m)} > 0$ $p_{ji}^{(m)} > 0$). Write $i \leftrightarrow j$.

Properties of the Relation of Communication Lemma (1).

The relation of communication satisfies the following three properties: For all *i, j*, and *k*:

- a) $(i \leftrightarrow i)$: State *i* communicate with itself.
- a) $(i \leftrightarrow i)$. State *i* communicate with itsen.
b) $(i \leftrightarrow j) \Rightarrow (j \leftrightarrow i)$: State *i* communicates with *j*, then state *j* communicates with *i*. $(i \leftrightarrow j) \Rightarrow (j \leftrightarrow i)$: State *i* communicat
communicates with *i*.
 $(i \leftrightarrow j)$ and $(j \leftrightarrow k) \Rightarrow (i \leftrightarrow k)$: Sta
- c) : State *i* communicates with *j*, and state *j* communicates with state *k* , then *i* communicates with *k* .

Proof. The proof of properties a) and b) are obvious (leave to students). c) Suppose that $i \leftrightarrow j$ and $j \leftrightarrow k$. Then, since $i \rightarrow j$ and $j \rightarrow k$ then there exit some $m \ge 0$ and $n \ge 0$ for which $p_{ii}^{(m)} > 0$ $p_{ij}^{(m)} > 0$, $p_{jk}^{(n)} > 0$. So, 0 and $n \ge 0$ for which $p_{ij}^{(m)} > 0$, $p_{ik}^{(m+n)} = \sum_{i} p_{ii}^{(m)} p_{ik}^{(n)} \ge p_{ij}^{(m)} p_{jk}^{(n)} > 0$.

$$
p_{ik}^{^{(m+n)}} = \sum_{l} p_{il}^{^{(m)}} p_{ik}^{^{(n)}} \ge p_{ij}^{^{(m)}} p_{ik}^{^{(n)}} > 0.
$$

That is, there exits $r \ge 0$ such that $p_{ik}^{(r)} > 0$. Hence, $i \rightarrow k$. Similarly, we can show that there exits $s \ge 0$ such that $p_{\kappa}^{(s)} > 0$, which states that $k \rightarrow i$. Therefore, $i \leftrightarrow k$.

- ❖ A set of states *C* is a **communicating class (class)** if every pair of states in *C* communicates with each other, and no state in *C* communicates with any state not in *C*.
- ❖ Two states that communicate are said to be in the same class.
- ❖ Two classes are either identical or disjoint (have no communicating states).

For example, the classes of the MC $\{X_n, n \ge 0\}$ on the state space $SS = \{0, 1, 2, 3\}$ with the following TPM are $\{0, 1\}$, $\{2\}$, and $\{3\}$:
 $\begin{pmatrix} 1/2 & 1/2 & 0 & 0 \end{pmatrix}$

$$
\mathbf{M} = \begin{pmatrix} 1/2 & 1/2 & 0 & 0 \\ 1/2 & 1/2 & 0 & 0 \\ 1/4 & 1/4 & 1/4 & 1/4 \\ 0 & 0 & 0 & 1 \end{pmatrix}.
$$

- **Def (4) (**Closed set**):** A set of states, *C* in a MC is called a **closed set** if no state outside of *C* is reachable from any state in *C*. (i.e. if no one-step transition is possible from a state in *C* to a state outside of *C*. That is $\forall i \in C$ and all $j \notin C$, $p_{ij} = 0$. In fact, $p_i^{(n)} = 0$ $p_{ij}^{(n)} = 0$ for all $n \ge 1$).
- **Def (5) (**Irreducible set**):** A closed set *C* of states is irreducible if any state $j \in C$ is **reachable** from every state $i \in C$.
- **Def (6**) **(**Irreducible MC**)**: A MC is said to be **irreducible** if there is only one class (all states communicate with each other). This is only one class (all states communicate with each other). The implies that n exists such that $Pr(X_n = j | X_0 = i) = p_i^{(n)} > 0, \forall i$, *n* inicate with each other). This
 $X_{n} = j | X_{0} = i$ = $p_{ij}^{(n)} > 0$, $\forall i, j$.

Thus, A MC with state space *SS* is said to be **irreducible** if $i \leftrightarrow j$ for all $i, j \in SS$.

• **Def (7) (**Absorbing**):** A state *i* that is never left after it is entered is said to an **absorbing state,** i.e., if $p_{ij} = 1$.

- In this diagram there are two absorbing states: 0 and 4.
- Note that, an absorbing state itself is classified as one class.
- **Def (8)** (Reflecting state): Reflecting state is the state at which the MC will continue, but in the reverse direction.
- **Def (9)** (Partially Reflecting state): Partially Reflecting state is the state which is the same as the reflecting state, except that the MC will stay on that state for a unit step time with some probability.
- **Def** (10) (Period state): State *i* is said to have period d_i if $p_i^{(n)} = 0$ whenever *n* is not divisible by d_i , and d_i is the greatest common divisor of all integers $n \geq 1$:
- $p_i^{(n)} > 0$ $p_i^{(n)} > 0$. If the only possible steps in which state *i* can occur again are d_i , $2d_i$, $3d_i$,.... In that case, the recurrence time for state *i* has period d_i .
- **Def** (11) (Periodic and aperiodic): A state *i* with period $d_i > 1$ is said to be **periodic**, that is a state is **periodic** if it can only return to itself after a fixed number of transitions greater than 1 (or multiple of a fixed number).

If a state is not periodic, it is referred to as **aperiodic**: $d_i = 1$.

A MC in which every state is a **periodic** is known as a periodic MC.

Periodicity is a class property (= state *i* has period d_i and $(i \leftrightarrow j)$ then *j* has period d_i).

For example, for the MC $\{X_n, n \ge 0\}$ on the state space $SS = \{0,1,2\}$,

The TPM is:

$$
\mathbf{M} = \begin{pmatrix} 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \end{pmatrix}.
$$

• **Def (12) (**Transient state**):** A state *i* is said to be a **transient state** if there exists a state *j* that is reachable from *i*, but the state *i* is not reachable from state *j*. (i.e., if the probability of MC eventually ever returns to state *i* is less than 1).

• **Def (13) (**Recurrent state)**:** A state *i* is said to be a **recurrent** (**persistent** ''not transient'') if, the probability of MC eventually ever returns to state *i* equal one (i.e. if it is revisited infinitely often with probability one).

A state is either **recurrent** state or **transient** state. For a recurrent state, it can be either absorbing state or non-absorbing state. The state space of a MC, can be partitioned into a transient set and closed sets of recurrent states (possibly absorbing).

If a MC has **finite state space**, then at least one of the states is **recurrent**.

A class is either **all recurrent** or **all transient** and may be all periodic or **aperiodic.** All states in an **irreducible** MC are **recurrent**.

A and **B** are *transient* states**, C** and **D** are *recurrent* states. Once the MC moves from **B** to **D**, it will never come back.

A MC is **irreducible** if the corresponding graph is connected (and thus all its states are recurrent).

A MC is *periodic* if all the states in it have a period *k* >1. The above MC has **period** 2.

For example, For the MC $\{X_{n}, n \geq 0\}$ on the state space (1) - *SS* = {0,1,2,3} with the following TPM:

$$
\mathbf{M} = \begin{pmatrix} 0 & 0 & 1/2 & 1/2 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix},
$$

All states **communicate**. Therefore, all states are **recurrent**. (2)- $SS = \{0, 1, 2, 3, 4\}$ with the following TPM:
 $\begin{pmatrix} 1/2 & 1/2 & 0 & 0 \end{pmatrix}$

$$
\mathbf{M} = \begin{pmatrix} 1/2 & 1/2 & 0 & 0 & 0 \\ 1/2 & 1/2 & 0 & 0 & 0 \\ 0 & 0 & 1/2 & 1/2 & 0 \\ 0 & 0 & 1/2 & 1/2 & 0 \\ 1/4 & 1/4 & 0 & 0 & 1/2 \end{pmatrix},
$$

There are **three classes** {0, 1}, {2, 3} and {4}. The first two are **recurrent** and the third is **transient**.

(3)- $SS = \{0,1,2,3\}$ with the following TPM, with x is a prob.

$$
\mathbf{M} = \begin{pmatrix} 0 & x & x & 0 \\ x & 0 & 0 & 0 \\ 0 & 0 & 0 & x \\ x & 0 & 0 & x \end{pmatrix}.
$$

Every pair of states that **communicates** forms a single **recurrent class**; however, the states are **not periodic**. Thus, the MC is **aperiodic** and **irreducible**.

(4) - $SS = \{0, 1, 2, 3, 4\}$ with the following TPM, with x is a prob.

States 0 and 1 **communicate** and form a **recurrent class**. States 3 and 4 form separate **transient classes**. State 2 is an **absorbing** state and forms a **recurrent class**. (5)- $SS = \{0,1,2,3\}$ with the following TPM, with x is a prob.

$$
\mathbf{M} = \begin{pmatrix} 0 & x & x & 0 \\ 0 & 0 & 0 & x \\ 0 & 0 & 0 & x \\ x & 0 & 0 & 0 \end{pmatrix}.
$$

Every state communicates with every other state, so we have **irreducible** MC. This MC is **irreducible** and **periodic**. **(6)**- $SS = \{1, 2, 3, 4, 5\}$ with the following TPM, with x is a prob.

$$
\mathbf{M} = \begin{pmatrix} x & x & 0 & 0 & 0 \\ x & x & 0 & 0 & 0 \\ 0 & 0 & x & x & 0 \\ 0 & 0 & x & x & x \\ 0 & 0 & 0 & x & x \end{pmatrix},
$$

State 2 is **accessible** from state 1, states 3 and 4 are **accessible** from state 5, but states 3 is not accessible from state 2. States 1 & 2 **communicate**; states 3, 4 & 5 **communicate**; states 1,2 and states 3,4,5 do not **communicate**. States 1 & 2 form one **communicating class**. States 3, 4 & 5 form another **communicating class**. This MC is not an **irreducible.**

- **Def** (14) (Mean recurrence time): The mean recurrence time h_i is defined as the average time for first return to state *i*. (For a transient state, $h_i \equiv \infty$).
- There are two types of recurrent states:
- **Def** (15) (Null recurrence state): A recurrence state *i* is called **Null recurrent** state if the expected time to return to the state *i* is infinite (the mean recurrence time $h_i = \infty$); otherwise it is called **Non-null recurrent** (or **Positive recurrent**) state.
- **Def** (16) (Non-null recurrence state): A recurrence state *i* is called **Non-null** (or **Positive) recurrent** state if the expected time to return to the state is finite (if the mean recurrence time $h_i < \infty$).
- **Def (17)** (Ergodic state): A recurrent state is said to be **ergodic** state if it is both **non-null recurrent** and **a periodic**. This implies that it is possible to come back to that state in any given number of steps and that such a return will always occur with finite mean recurrence times.

• **Def (18)** (Ergodic MC): If all states in a MC are ergodic it is called ergodic MC (i.e. all states in a MC are non-null recurrent, a periodic).

Note that an a periodic, irreducible ''all states communicate with each other'', MC with a finite number of states will always be ergodic.

To determine if a state is recurrent or not, the following result would be useful instead of using the definition.

Theorem (1). State *j* is **recurrent** if and only if $\sum p_i^{(n)}$ 1 *n* $\sum_{n=1}$ *F* ij $\stackrel{\scriptscriptstyle{\circ}}{\Sigma} p$ $\sum_{n=1} P_{ij}^{(n)} = \infty$.

Proof. To prove the **sufficiency**, suppose that the state *j* is **recurrent**. Then, the number of visits (# visits) to state j is **infinite** and so the expected number of visits to state *j* is also infinite. That is $E[\# \text{ visits to } j | X_{0} = j] = \infty$.

E $\left[$ # visits to $j | X_{i} = j \right] = \infty$. Let us define the indicator variable: 1 if 0 if *n n n* $X_n = j$ $I_n = \begin{cases} 1 & \text{if } x_n \\ 0 & \text{if } X_n \neq j \end{cases}$ $\left[1 \text{ if } X_n = \right]$ $=\{$ $\left[0 \text{ if } X_n \neq \emptyset\right]$.

Then $\sum_{n=1}^{\infty} I_n$ $\sum_{n=1}^{\infty} I_n$ reduces to the number of visits to state *j*. Hence, the **expected** number of visits to state j given $X_0 = j$ is

$$
\sum_{n=1}^{\infty} \frac{1}{n} \text{ = } x \text{
$$

The necessity follows immediately.

Lemma (1). State *j* is **transient** if $\sum p_i^{(n)}$ 1 *n* $\sum_{n=1}$ *r* ij $\stackrel{\scriptscriptstyle{\circ}}{\Sigma} p$ $\sum_{n=1}^{\infty} p_{ij}^{(n)} < \infty$. (leave to students). ❖ In a finite-state MC not all states are transient, i.e., there exist at least one recurrent state.

Theorem (2). If state *i* is recurrent and $i \leftrightarrow j$, then state *j* is recurrent.

Proof. Suppose that state *i* is recurrent and $i \leftrightarrow j$. Then there exist $m > 0$ and $n > 0$ such that $p_i^{(m)} > 0$, and $p_i^{(n)} > 0$. Also, from Chapman-Kolmogorov equation the following holds for $l > 0$: $p_{ii}^{(m+n+l)} \ge p_{ii}^{(m)} p_{ii}^{(l)} p_{ii}^{(n)}$ $p_{ij}^{(m+n+l)} \geq p_{ji}^{(m)} p_{ii}^{(l)} p_{ij}^{(n)}$. So, ∞ , and ∞

$$
\sum_{l=1}^{\infty} p_{_{jj}}^{^{(m+n+l)}} \geq p_{_{ji}}^{^{(m)}} p_{_{ij}}^{^{(n)}} \sum_{l=1}^{\infty} p_{_{ii}}^{^{(l)}} = \infty.
$$

Questions. Prove that

- If $i \rightarrow j$ and $j \rightarrow k$ then $i \rightarrow k$.
- If *i* is **recurrent** and $i \rightarrow j$, prove that state *j* is **recurrent**.
- If state *i* is **transient**, and state *i* **communicates** with state *j*, prove that the state *j* is **transient** \rightarrow transience is also a **class property**.