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Topic: Generalized Fibonacci sequences

+You should know
a- how to solve the second order recurrence relation, in the two cases:

1- by some changing the recurrence relations slightly
while preserving the first two initial terms of the
sequence,

2- by some altering the initial terms of the sequence but

maintaining the recurrence relations.
b- study on some properties of particular sequences
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Lecture # 6
Generalized Fibonacci sequences

Some Aspects of Sequences
Consider the m™ order homogeneous linear recurrence relation

T =aT _ +aTl ,+..+a T = ZaiTn_i ,
i=1

where a,,a,,---,a_ are real constants, a_ 0. To generate a
sequence {T,} ", we specify initial values T,,T,,...,T

! "m-1°

Generalized Fibonacci sequences

The classical Fibonacci sequence can be generalized in several
ways, either by some changing the recurrence relations slightly
while preserving the first two initial terms of the sequence, or by
some altering the initial terms of the sequence but maintaining the
recurrence relations.

»Generalized (a,b; p,q)-Fibonacci sequence {T =T, (a,b; p.q)}
For m=2 and n>0, we write the notation T, (a,b; p,q), or
briefly T, as the generalized Fibonacci sequence {T,}  which is

defined by the 2°*! order homogeneous linear recurrence relation
T =pT _,+qT _,,forall n>2 (N

with the initial conditions T,=a and T,=b, where a,b are

arbitrary integers.

If q=0,aswell as p*+4q=0.{T, =T, (ab;p,q)} is called

Horadam sequence. It generalizes many sequences. Examples of
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such sequences are Fibonacci numbers sequence {F, } , Lucas
numbers sequence {L,} , Pell numbers sequence {P,} , Pell-
Lucas numbers sequence {Q, } , Jacobsthal numbers sequence
{J,} ., and Jacobsthal-Lucas numbers sequence {j,} .

The characteristic equation of recurrence relation (1) is
1- px—qx>=0.
The two roots of this characteristic equation are

p++/p° +4q p—/P" +4q
= ) and = .

2

a

Theo (1). The generating function for the generalized(a,b; p,q)-
Fibonacci sequence {T, =T, (a,b; p,q)} is given by

a+(b-ap)x
- pX—Ox°

G(x)

Proof. Let G(x)= iTnxn be the generating function of the
n=0

generalized -Fibonacci sequence {T, =T, (a,b; p,q)}, which can be

obtained through the usual trick, we note that T,=a and T, =b.
We write

G(X)=Ty+TX+T X +..+T X" +...,
then obtain pxG(x)and gx’G(x), subtract them from G(x), use the
recurrence to get remove of all summands except the first two and
Impose the initial conditions.

Using the rational expansion theorem, we get the Binet’s form of
the Horadam sequence:
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_(b—ﬁajan+[aa—bjﬂn
- a—pf a—pf ’
where A:M and B= aa —b

Jp*+4q] Jp*+4q.

= Particular Cases
(1)- Eibonacci Sequence {T, =T, (0,1 p,q)}:

[ 2 " 2 "

If we set a=0, and b =1, we obtain the a Fibonacci sequence
{T,=T,(0.3 p,q)}, in this case

T =pT _,+qT,,,forall n>2 (1)
with the initial conditions T, =0 and T, =1.
Theo (1). The generating function for the Fibonacci sequence

(T,=T,(0.1 p,q)} is given by, G(x)=

1—- px—gx*
Proof. Let G(x iT x" be the generating function of the

n

sequence {T, =T,( ,1, p.q)}, we note that T, =0 and T, =1. Thus

(x)=
T
(x
(
(

G(X)=Ty +TX+T,X* +...+T,x" +...
PXG (X) = pTyX+ pT,X° + pT,x° +...+ pT X" +
gx°G(x) =qTox* + T, X +qT,x* +...+qT,x""* +



We will add the power series G(x), —pxG(x), and —gx*G(x) we
have
G(X)— pXxG(X)—agx°G(x) =T, +(—pT, +T,) X+ (—qT, — pT, + T, ) x* +

Notice that if we take our rearranged recursion formula
T,-pT,,—qT,, =0,

with n=2 we get T, — pT, —qT, =0.

Thus, the coefficient of x* term in our combined series is zero.

In fact, using the recursion formula, the coefficient of the terms
after the x* term we see they are all zero. Thus, we have

G(x)— pxG(x)—gx°G(x) =T, +(—pT, +T,)x.
Since T,=0 and T, =1, then

G(x)— pxG(X)—gx°G(x)=x,

and

G(x)(l— px—qx2)=X:>G(x) i}

1px gx°

Theo (2). (Binet’s Formula)
The terms of the sequence {T, =T, (0,1 p,q)} are given by

T _¢ —ﬂ” p+y/p +40 | | p—yP°+4q
” w/p +4q 2 2 |

. / 2
where o = P~ z + 49 and S = P F2) 44 are the roots of the

characteristic equation 1— px —gx’ =0.




Proof. We express a function G(x ZT x" for T _as a sum of

n=0

partial fractions. Let 1- px—gx*® =(1—ax)(1- Bx), and consider
X A B
= + ,
1— px—Qgx° 1 ax 1-px

G(x)=

then, x=A(1-gx)+B(1-ax). If X_E then

——B(l——j 1.8 ( _ jaszijsz_—l
P f—a o—

Similarly, if x_— n we have E—A(l—éj:A_ 1 then
1- px—0Qx 1-ax 1— X a- B
0 non 0 0(”—,8 n_ﬂ”
ZIBX—”Z;(& ﬁ]X —nZ(;TX:>T_ v

it’s Binet’s formula for the Fibonacci sequence {T, =T,(0,1 p,q)}.

Theo (3). Sum of the first n terms of the Fibonacci sequence
{T,=T,(0.5p,q)} is

iT n+1 + qT 1
=i p+q-1 .
Proof. By summing up the geometric partial sums,

n+1
Za =

analogously for g and 1- p—q _( )(1 B), we have
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ZTk a _ ﬂk 1 an _Tn—l
k=0

— B i o — IB k=0 1-p—-q
Theo (4). Sum of the flrst n terms with odd indices 1s
ZTZ,_l [1+ (T, +T, 44Ty ) = Toa |.

This identlty becomes
T 1= P(To+ T+ T, + .+ T, )+ (-1 (T, + T+ To +.+ Ty ).

Theo (5). Sum of the first n terms with even indices is

ZT2| _—[ T+T+. +T2n+1)_T2n+2]'
i=1

This identity becomes
T, .,= (q 1)(T +T, +T4+...+T2n)+ p(Tl+T +T +..+T

2n+1)

Theo (6). Multiplication of two consecutive Fibonacci sequence
{Tn =T.(0,1; p,q)} isgivenby TT = pZn:q”‘lef.
Proof. Since T = pT_,+qT, ,,and T _, k;oan +qT_,. Then
T.T...=T,(pT,+qT, l) = pT.+qT,T,,=pT,. +q(PT, . +0T, )T, 4
= pT2+q(pT, +qT, T, )= pT. + paT 2, +9°T, T, ,
= pT2+pqT2, +q (an_z +qT, T, )
=pT2+pqT >, + pq°T2, +q°T T .+
= pT.+ paT 72, + pa’T 2, +...+ pa" T +q"| pT7 +qT,T, |
=pT2+pgTZ, + pq°T2, +...+ pq" T/ + pq"T;

- p(Tn2 +qT2, +9°T2, +..+q" T2 +q"T; ) _ pzqn_k_l_kz |
k=0



Theo (7). For the matrix U =(O
q p

Proof: (Using principal mathematical induction)

T, T 0 1 :

For n=1, then Uz(q ° 1}( j the result is true.
qr, T,) (9 p

Suppose the result is true for n=k, i.e., let

T, T
Uk =(q KLk j be true. Now
qu Tk+l

U — UKL :(qul T, j(o 1]:(% ATy + kaj:( qT, Tkﬂ]

al, T J)\ga p Ten AT +pT, AT Tiiz
Thus, the result is true for n=k +1.
Note that |U|=—q.

T T
1), we have U" :(q oo j
ql, T

n+1

—

Theo (8). For any positive integers, p,q, m,and n, 0<m<n:
Toin = T Tna 0T T,

Proof: Using principal mathematical induction.
Forn=1,wehave T ,=TT,+qT_.T,Since T,=0, T,=1and

T,=p.ThenT_,=pT_ +qT_,. Thus, the result is true for n=1.

Suppose the result is true for n=k, i.e., let
T ..=TT. +qT_.T betrue, and show it’s true for n=k +1.

T = Pl AT =P (TmTk+1 +qT,, 4Ty ) +q (TmTk + qu—lTk—l)
=T, ( PT.; +0T, ) + qu—l( pT, + qu_1) =TT +aT T
=T T....+qT __T,... Thus, the result is true for n=k +1.
1- Alternative proof of Theo (9),



- am _ﬂm an+l_ﬂn+1 e am—l_ﬂm—l an _ﬂn
(S o g

am+n+1+ﬂm+n+l_an+l m _amﬂml .\ _am+nﬂ_am+na+amﬂn+l+an+lﬂm

(a-p) (a-p)
_ am+n+1+ﬁm+n+l_am+nﬁ+aﬂm+n _ am+n (a_ﬁ)_ﬂmm (a—ﬁ)
(a=p) (a-p)
_ am+n +ﬂm+n 1 |
Cl—ﬂ m+n

2- Alternative proof of Theo (9), (using matrix method)
We know that U™" =U"xU" and, if

T T
U :(O 1], then U" =(q oo j
q p an Tn+1

Then
T T T T T T
Um x Un — Um+n — q m-1 m q n-1 n _ q m+n-1 m-n —
qu Tm+1 an Tn+1 qu+n Tm+n+1
qum—lTn—l T quTn qu—lTn + Tan+1 _ qu+n—l Tm+n
quan—l + qu+l n quTn +Tm+1Tn+1 qu+n Tm+n+l

Equating the corresponding entries, then
qZTm—lTn—l + quTn = qu+n—1 - T = Tan + qu—lTn—l

QT T ,+qT T =qT ., =T =T T +qT. T,

m+n-1

m n-1 m-n m-n
qu—lTn +Tan+1 - Tm+n — Tm+n - Tan+l + qu—lTn
quTn + Tm+1Tn+1 - Tm+n+1 - Tm+n+1 - Tm+1Tn+1 + quTn '

Note: Putting n=n-m>0 then the above result can be written as
T=TT . .,+qT_ T _

m ' n—m+1
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Theo (9). The following relations are true
(a) T,, =T (Tn+1+an_1)
(b) T =0T, +T
(€) Ton=0"T,+(-1)'T,.
Proof. (a)- We have
a" =p" _a"=p" n . an
Ty = g (a"+B")=T,(a"+ ")
Since (a” +,6’”)(a -p)=a"-p"™ —aﬂ(a"_l —,B”‘l).
Therefore
) ) o™t —,Bn+l _,B n-1
a + [ = oy _aﬂ( oy j —afT, .
Notice that af =-
(b)- For n=0, the result is true since T, =qT; + T, =1.
Suppose the result is true for n=k >1, I.e., let
T, =qT.2 +T7, is true, and show the result is true for n=k +1.
Consequently,
qu2+1 +Tk2+2 q( 2k+1 qT )+Tk2+2 Tkz+2 q q 2k+1
_( w2 — Ty )(Tk+2 +qT, )+q 2kl = ka+1(Tk+2+qT )"‘q 2k+1
= Pl T ATo0 = Toyia
This induction proof is completed.
(c)- For n=0, the result is true since T, =q™T, +(-1)'T, =T,.
Suppose the result is true for n=k >1, i.e.,
let T . =q"T, +(—1)kTm Is true, and show the result is true for

n=k +1. Accordingly,
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T — quk+l =Pl + 0T — q" ( pT, + qu—l)
=(0=1)(Teom =0T )+ A(Toms + 0" Ty ) = (A =1)(-1) T, +q(-2) T
=q(-1)'T, —(-1)T, —a(-1)‘T, = (-1)"'T,,.
Thus, the proof is completed.
Theo (10). (Cassini’s identity). For any positive integers, p,q
and n we have T T, ,-T?=(-1)"q"™".
Proof. Let p,q and n be positive integers and n> 2.
Since T, =pT _,+qT _,, T ,=pT ,+qT .and T ,=pT +qT .
Then

Tn+1Tn—1 _Tn2 - ( an + an—l)Tn—l _Tn2 - anTn—l + an2—1 _Tn2

= an2—1 +Tn ( an—l _Tn ) - an2—1 +Tn (_an—Z)

=T, —qT,T,, =—q(T,T,,-T7,)

n'n-2 "

We can now repeat the above process on the last line to obtain
= (=) (ToaTos — T2 ) =(-0) (T, Tos —T2s ) =
=(-1)"a"(T,T,-T2)=(-1)"q"",

since T,=1and T, =1/q.

1- Alternative proof Theo (10). We have

T

T _T2 ~ an+1_ﬂn+1 an—l_ﬁn—l - an _ﬂn 2
n+1"n-1 n OZ—ﬂ 0[-,6 0(—,3
- aZn +ﬂ2n _an—l n+1_an+1ﬂn—l aZn _zanﬂn +182n
- 2 B 2
(a-5) (a-5)
~ _an—l+'Bn—l_an—lﬂn+l+2anﬂn

(a-B)
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_a" N ()(a ~20B4 ) (1) q" (a-p) (g
(2= B) (a =)

2-Alternative proof Theo (10) (Using matrix method).

i T T
Since U :(O 1} , then detU=—-qg and U" :[q o j then
q p an Tn+1
taking determinants we have,
n an—l Tn 2 2
detU" = ‘ an Tn+1 = an—lTn+l o an =q (Tn+1Tn—1 _Tn )

=(detU)" =(-q) =TT, -T?=(-1)"q""
Theo (11).
For any nonnegative integer n we have
T T —T2=(-1)"T2

n—r n—r n+r n+r n n \2
PrOOf Tn—rTn+r _Tn2 = 4 _ﬁ . « _ﬂ — « _ﬁ
a-p a—-p a-p

aZn _an—rﬂnﬂ _an+rﬁn—r +ﬂ2n _aZn + Zanﬁn _ﬂZn
(a-p)

(e (]

_ (_1)'”1 _ﬂzr_*_azr_ _(_q\T ar—,Br 2: C\HeT
_(a_ﬂ)z (ap) 2] (1) (a_ﬂJ (-1) T2

Theo (12). For any positive integers, p,q and n, we have
Tn—ZT +1 _Tn—lTn = (_1)”_1 pqn—Z.

n
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Proof. Let p,g and n are positive integers and n>2. We get

T T _T T _ an—z_ﬁn—z an+1_ﬁn+l - an—l_ﬂn—l OCn _ﬁn
n-2"n+l n-1'n 0(—,8 a—ﬂ a_ﬂ a_ﬁ

aZn—l +ﬁ2n—1 _an—Zﬁml _an+lﬂn—2 a2n—1 _anIBn—l _an—lan +IB2n—1

(- ,B)Z (o —ﬂ)z

_ _an—Z +an+1ﬂn—2 +anﬂn—l+ﬂn+l
(a-B)

_a ()@’ - f-apt+ ) (A g2+ ) =() .
(a-B)

Theo (13). For any positive integers, p,q, m, and n, m>n. Then
T2-T, T =(-1)" q""T2.

m-—n " m+n

Proof. Let p,q, m, and n are positive integers, m>n. We have

T2_T T _ am_IBm 2_ am—n_ﬂm—n am+n_ﬁm+n
m m-n ' m+n a—,B a—lB a_ﬁ

- aZm +ﬂ2m _ zamﬂm _an+1ﬂn—2 aZm _am+nﬂm—n _am—nﬂmm +ﬂ2m

la=7) (a=p)
a2 g ) (Y (wp)
(a=p) (- )

=(-1)""q""T>.
Theo (14). For any positive integers, p,g, m, n and k. Then
Tm+nTm+k _Tme+n+k — (_q )m TnTk .

Proof. Let p,q, m, n and k are positive integers. We have
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m-+n m-+n m-+k m-+k
Tm+nTm+k o Tme+n+k = [ = ﬂ ( = ﬁ j

- am _ﬁm am+n+k _ﬂm+n+k
a— oa—f

(a-B)

_ (—q)m[—ﬁ (a"-pB")+a"(a" —ﬂ”)]
(a-B)
AN P) (o

(a—B)

Theo (15). The following relations are true

a"=Ta+qT_,, " =T A+qT _, and Tn:a _ﬁ :
a_

Proof: (By mathematical induction)

If n=1then o =T,a+qT,. S0, a =« as T,=0, T,=1. Therefor the
result is true for n=1.

Also, for n=2 then

2 2 2 2
2 _P +2q+§ p° +4q and T,a +qT, = p +2q+§\/p +4q |
Thus, the result is true for n=2.
Suppose the result is true for n=k, i.e.,
let o =T .a+qT,_, is true, we show the result is true for n=k +1.
Since o’ =T,a+qT,, T,=1and T, = «, then

k

at=aa" =a(Ta+qT,,)=a’T, +aqT, , =(T,a +qT,)T, +aqT, ,

a
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=aT, T, +qT,T +aqT,_, =a(aT, +qT,)+qT, =aT,,, +qT,.
Thus, the result is true for n=k +1. So, we can say that,
a"=Ta+qT _, forall neN.
Similarly, we can prove 8" =T g+qT_,.
Subtracting g" =T g+qT,_, from " =T a+qT_, and dividing the
result by o — 3, we obtain

& =Ta+dT,,~(TA+dT, ) =(a-p)T, =T, =L~

Theo (16). The relation Iimh = a IS true

n—oo Tn

Proof. We have

T _aopt @B B ) amp
Tn — an_ﬂn o an_ﬂn o (ajn 1
p
Since a > g , then “_nﬂ — 0 as n— oo, implies the result.
‘1
p

Theo (17). The following relation is true
T,—c =(p—c)T,+[(p-c)c+q] T +Te"* +..+T,, |,
where 1<c<p.

Proof: (By mathematical induction).
If n=2 then

T, —c:(p—c)T1+[(p—c)c+q]To,
since T, = pT, +qT, = pT,, then
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pT,+qT,—c=(p—c)T,=>(p-c)T,=(p—c)T,.
Thus, the result is true for n=2.
Suppose the result is true for n=k, i.e., let

T~ =(p—c)T+[(p—-c)c+q] T +Tc" *+..+T,, | is true.

We show the result is true for n=k +1.

(p=c)T +[(p—c)e+q][ T +Te 2 +..+ T, |
=(p—c)T+[(P—c)c+a] Tuy +CT, +C°T, 5 +---+C T, +C7T, |
=(PT, +qT, ;) —CT, +q| CT, , +C°T,_;+--+C T, +¢°T, |

+ p[ch_l +CT, 4+ +C T, + CkTo]
+C|:CTk_1 +CT, , +-+C T, + c"TO]
=T —CT +C(PT +qT,, ) +C*(PT, +qT5)+--+c 7 (pT, +0T,)
T, —CT,_,—-—C'T, —c"T, - c""T,
=T, —CT, +cT, +cT_, —cT_, +---+CT, T, —---—C*'T, —c"
=T, —c“. Thus, the result is true for n=k +1.
Note that if c=p in above result then we have,

n-2
T -p"'= q[T0 P+ "+ ...+Tn_2] =T, =p""+0> p T, .-
i=1
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Exercises.

Solve the following Questions:

In the Fibonacci sequence {T, =T, (a,b; p,q)}: prove that

(1)- The sum of the first n terms given by

n-1

ZT T, +qT,,+pa-a-b
i=0

p+q-1
where p+q=1and p,q=>0.

(2)- The explicit formula for the Fibonacci sequence
{T.=T.(ab;p,q)} is given as

LnT_lJ n—k b LnT_lJ n—k-1
-I—n :az( janqu_i_(__aj ( janqu’
o\ K P k=0 k

where a,b, p,qeZ and n>1.

(3)- Find few terms of in the following special cases of the
Fibonacci sequence {T, =T, (a,b; p,q)}:

I- For a=0, b=1

- Fora=p=2, g=1and b=3,

li- For a=0, b=1, and g=1.

(4)- The generalized sequences {T, =T, (a,b; p,q)} have several

famous number sequences as special cases. In the following
table, for different values of a, b, p & g many sequences can
be determined. Deduce these formulae?
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Table 1. Some famous sequences

Name T,(ab;p,q) |Characteristic | Generating function
polynomial

Fibonacci | F(0011) | 14x—x2=0 G(x)= x_
1-x-—X

Pell P.(0L21) | 1+2x-x2=0 G(x):———i——?
1-2X—X

Jacobsthal | J,(0112) | 24x—x2=0 G(x)=——
1-x—-2X

Mersenne |M,(0.53-2) | 2-3x+x*=0 G(X)=
1-3x+2X

L.ucas L, (2511) 1+x=x*=0 G(x)= 2—x2
1-x-—X

P-Lucas | p.(2221) |14+2x-x*=0 G(x)= 2%
1-2x—X

J-L.ucas J.(231,2) 2+Xx—%x2=0 G(Xy:__é:i_?
1-x—-2X
M-Lucas |m,(233-2) | 2_3x+x* =0 23X

G(x)=_<~"°%
(%) 1-3x+2x°
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