
Visual C# 2012 How to Program







 A class that is declared sealed cannot be a base 
class (i.e., a class cannot extend a sealed class).

 All methods in a sealed class are implicitly 
sealed.

 Class string is a sealed class. This class cannot 
be extended, so apps that use strings can rely on 
the functionality of string objects as specified in 
the Framework Class Library.





Standardized Interactions
 Interfaces define and standardize the ways in which people and 

systems can interact with one another. 
 A C# interface describes a set of methods that can be called on an 

object—to tell it, for example, to perform some task or return some 
piece of information. 

 An interface declaration begins with the keyword interface
and can contain only abstract methods, abstract properties, abstract 
indexers (not covered in this book) and abstract events (event are 
discussed in Chapter 14).

 All interface members are implicitly declared both public and 
abstract.

 An interface can extend one or more other interfaces to create a more 
elaborate interface that other classes can implement.





Implementing an Inter face
 To use an interface, a class must specify that it implements

the interface by listing the interface after the colon (:) in the
class declaration.

 A concrete class implementing an interface must declare
each member of the interface with the signature specified in
the interface declaration.

 A class that implements an interface but does not implement 
all its members is an abstract class—it must be declared 
abstract and must contain an abstract declaration for 
each unimplemented member of the interface.





Common Methods for Unrelated Classes
 An interface is typically used when unrelated classes need to 

share common methods so that they can be processed 
polymorphically

 You can create an interface that describes the desired 
functionality, then implement this interface in any classes 
requiring that functionality.



Inter faces vs. Abstract Classes
 An interface often is used in place of an abstract class 

when there is no default implementation to inherit—that is, no 
fields and no default method implementations.

 Like abstract classes, interfaces are typically public
types, so they are normally declared in files by themselves 
with the same name as the interface and the .cs file-name 
extension.



• To build an app that can determine payments for 
employees and invoices alike, we first create an interface 
named IPayable.

• Interface IPayable contains method 
GetPaymentAmount that returns a decimal amount to 
be paid for an object of any class that implements the 
interface.







UML Diagram Containing an Inter face
 The UML class diagram in Fig. 12.10 shows the 

interface and class hierarchy used in our accounts-
payable app.

 The UML distinguishes an interface from a class by 
placing the word “interface” in guillemets (« and ») 
above the interface name.

 The UML expresses the relationship between a class 
and an interface through a realization.





 Interface IPayable is declared in Fig. 12.11.





 We now create class Invoice (Fig. 12.12) 
represents a simple invoice that contains billing 
information for one kind of part.











 C# does not allow derived classes to inherit from more than 
one base class, but it does allow a class to implement any 
number of interfaces.

 To implement more than one interface, use a comma-
separated list of interface names after the colon (:) in the 
class declaration.

 When a class inherits from a base class and implements one 
or more interfaces, the class declaration must list the base-
class name before any interface names.



 Figure 12.13 contains the Employee class, modified to 
implement interface IPayable.







 Figure 12.14 contains a modified version of class 
SalariedEmployee that extends Employee and 
implements method GetPaymentAmount.

 The remaining Employee derived classes also must be 
modified to contain method GetPaymentAmount in place 
of Earnings to reflect the fact that Employee now 
implements IPayable.









 When a class implements an interface, the same is-a
relationship provided by inheritance applies.







 PayableInterfaceTest (Fig. 12.15) 
illustrates that interface IPayable can be used to 
processes a set of Invoices and Employees 
polymorphically in a single app. 











 Figure 12.16 overviews several commonly used 
Framework Class Library interfaces.









 You can overload most operators to make them sensitive to the context in 
which they are used.

Class ComplexNumber
 Class ComplexNumber (Fig. 12.17) overloads the plus (+), minus (-) and 

multiplication (*) operators to enable programs to add, subtract and 
multiply instances of class ComplexNumber using common 
mathematical notation.









 Keyword operator, followed by an operator 
symbol, indicates that a method overloads the 
specified operator.

 Methods that overload binary operators must take two 
arguments—the first argument is the left operand, and 
the second argument is the right operand.

 Overloaded operator methods must be public and 
static.







Class ComplexNumber
 Class ComplexTest (Fig. 12.18) demonstrates the 

overloaded operators for adding, subtracting and 
multiplying ComplexNumbers.








	Chapter 12�OOP: Polymorphism, Interfaces and Operator Overloading
	Slide Number 2
	Slide Number 3
	12.6  sealed Methods and Classes (Cont.)
	Slide Number 5
	12.7  Case Study: Creating and Using Interfaces
	Slide Number 7
	12.7  Case Study: Creating and Using Interfaces (Cont.)
	Slide Number 9
	12.7  Case Study: Creating and Using Interfaces (Cont.)
	12.7  Case Study: Creating and Using Interfaces (Cont.)
	12.7.1  Developing an IPayable Hierarchy
	Slide Number 13
	Slide Number 14
	12.7.1  Developing an IPayable Hierarchy (Cont.)
	Slide Number 16
	12.7.2  Declaring Interface IPayable
	Slide Number 18
	12.7.3  Creating Class Invoice
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	12.7.3  Creating Class Invoice (Cont.)
	12.7.4  Modifying Class Employee to Implement Interface IPayable
	Slide Number 26
	Slide Number 27
	12.7.5  Modifying Class SalariedEmployee for Use with IPayable
	Slide Number 29
	Slide Number 30
	Slide Number 31
	12.7.5  Modifying Class SalariedEmployee for Use with IPayable
	Slide Number 33
	Slide Number 34
	12.7.6  Using Interface IPayable to Process Invoices and Employees Polymorphically
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	12.7.7  Common Interfaces of the .NET Framework Class Library
	Slide Number 41
	Slide Number 42
	Slide Number 43
	12.8 Operator Overloading
	Slide Number 45
	Slide Number 46
	Slide Number 47
	12.8  Operator Overloading (Cont.)
	Slide Number 49
	Slide Number 50
	12.8  Operator Overloading (Cont.)
	Slide Number 52
	Slide Number 53
	Slide Number 54

