Chapter 12
OOP: Polymorphism, Interfaces and

Operator Overloading
Visual C# 2012 How to Program

OBJECTIVES

In this chapter you'll learn:

m How polymorphism enables you to “program in the general” and make systems
extensible.

m To use overridden methods to effect polymorphism.
m To create abstract classes and methods.

m o determine an object’s type at execution time.

m To create sealed methods and classes.

m To declare and implement interfaces.

m To overload operators to enable them to manipulate objects.

12.6 sealed Methods and Classes
12.7 Case Study: Creating and Using Interfaces

[2.7.1
12.7.2
12.7.3
12.7.4
12.7.5
12.7.6

12.7.7
12.8 Operator Overloading
12.9 Wrap-Up

Developing an IPayable Hierarchy

Declaring Interface IPayable

Creating Class Invoice

Modifying Class EmpTloyee to Implement Interface IPayable
Modifying Class Salaried-Employee for Use with IPayable

Using Interface IPayable to Process Invoices and Employees
Polymorphically

Common Interfaces of the .NET Framework Class Library

12.6 sealed Methods and Classes
(Cont.)

» A class that Is declared sealed cannotbe a base
class (i.e., a class cannot extend a sealed class).

» All methods in a sealed class are implicitly
sealed.

» Class stringisasealed class. This class cannot
be extended, so apps that use strings can rely on
the functionality of string objects as specified in
the Framework Class Library.

Common Programming Error 12.4

Attempting to declare a derived class of a sealed class
1s a compilation error.

12.7 Case Study: Creating and Using Interfaces

Standardized Interactions

» Interfaces define and standardize the ways in which people and
systems can interact with one another.

» A C# interface describes a set of methods that can be called on an
object—to tell it, for example, to perform some task or return some
piece of information.

» An interface declaration begins with the keyword 1nterface
and can contain only abstract methods, abstract properties, abstract
Indexers (not covered in this book) and abstract events (event are
discussed in Chapter 14).

» All interface members are implicitly declared both publ 1c and
abstract.

» An Interface can extend one or more other interfaces to create a more
elaborate interface that other classes can implement.

% Common Programming Error 12.5

It’s a compilation error to declare an interface member
public or abstract explicitly, because they’re
redundant in interface-member declarations. It’s also a
compilation error to specify any implementation details,
such as concrete method declarations, 1n an interface.

12.7 Case Study: Creating and Using

Interfaces (Cont.)

Implementing an Interface

» To use an interface, a class must specify that it implements
the interface by listing the interface after the colon (:-) in the
class declaration.

» A concrete class Implementing an interface must declare
each member of the interface with the signature specified In
the interface declaration.

» A class that implements an interface but does 7ot implement
all 1ts members iIs an abstract class—it must be declared
abstract and must contain an abstract declaration for
each unimplemented member of the interface.

Failing to define or declare any member of an interface
in a class that implements the interface results in a
compilation error.

ﬁ Common Programming Error 12.6

12.7 Case Study: Creating and Using
Interfaces (Cont.)

Ccommon Methods for Unrelated Classes

» An interface is typically used when unrelated classes need to
share common methods so that they can be processed
polymorphically

» You can create an interface that describes the desired

functionality, then implement this interface in any classes
requiring that functionality.

12.7 Case Study: Creating and Using

Interfaces (Cont.)
Interfaces vs. Abstract Classes

» An Interface often is used in place of an abstract class
when there is no default implementation to inherit—that is, no
fields and no default method implementations.

» Like abstract classes, interfaces are typically public
types, so they are normally declared in files by themselves
with the same name as the interface and the . cs file-name
extension.

12.7.1 Developing an IPayable
Hierarchy

 To build an app that can determine payments for

employees and invoices alike, we first create an interface
named IPayable.

o Interface 1Payable contains method
GetPaymentAmount that returns a decimal amount to

be paid for an object of any class that implements the
Interface.

Good Programming Practice 12.1

By convention, the name of an interface begins with I.
This helps distinguish interfaces from classes, improving
code readability.

Good Programming Practice 12.2

When declaring a method in an interface, choose a name
that describes the method’s purpose in a general manner,
because the method may be implemented by a broad
range of unrelated classes.

12.7.1 Developing an IPayable
Hierarchy (Cont.)

UML Diagram Containing an Interface

» The UML class diagram in Fig. 12.10 shows the
Interface and class hierarchy used in our accounts-
payable app.

» The UML distinguishes an interface from a class by
placing the word “interface” in guillemets (« and »)
above the interface name.

» The UML expresses the relationship between a class
and an interface through a realization.

«interface»
IPayable

Invoice Employee

?

SalariedEmployee

Fig. 12.10 | IPayable interface and class hierarchy UML class diagram.

<]
12.7.2 Declaring Interface IPayable

» Interface 1Payable is declared in Fig. 12.11.

I // Fig. 12.11: IPayable.cs

2 // IPayable interface declaration.

3 public interface IPayable

4 {

5 decimal GetPaymentAmount(); // calculate payment; no implementation
6 1} // end interface IPayable

Fig. 12.11 | IPayable interface declaration.

: <
12.7.3 Creating Class Invoice

» We now create class Invoice (Fig. 12.12)
represents a simple invoice that contains billing
Information for one kind of part.

1 // Fig. 12.12: Invoice.cs

2 // Invoice class implements IPayable.

3 using System;

4

5 public class Invoice : IPayable

6 {

7 private int quantity;

8 private decimal pricePerItem;

9

10 // property that gets and sets the part number on the invoice
I public string PartNumber { get; set; }

12

13 // property that gets and sets the part description on the invoice
14 public string PartDescription { get; set; }

15

16 // four-parameter constructor

17 public Invoice(string part, string description, int count,
18 decimal price)

19 {
20 PartNumber = part;
21 PartDescription = description;
22 Quantity = count; // validate quantity via property
23 PricePerItem = price; // validate price per item via property
24 } // end four-parameter Invoice constructor

Fig. 12.12 | Invoice class implements IPayable. (Part | of 4.)

25

26 // property that gets and sets the quantity on the invoice
27 public 1int Quantity

28 {

29 get

30 {

31 return quantity;

32 } // end get

33 set

34 {

35 if (value >= 0) // validate quantity

36 guantity = value;

37 else

38 throw new ArgumentOutOfRangeException("Quantity",
39 value, "Quantity must be >= 0");

40 } // end set

41 } // end property Quantity

42

Fig. 12.12 | Invoice class implements IPayable. (Part 2 of 4.)

43 // property that gets and sets the price per item

44 public decimal PricePerItem

45 {

46 get

47 {

48 return pricePerItem;

49 } // end get

50 set

51 {

52 if (value >= 0) // validate price

53 guantity = value;

54 else

55 throw new ArgumentOutOfRangeException("PricePerItem",
56 value, '"PricePerItem must be >= 0");
57 } // end set

58 } // end property PricePerItem

59

Fig. 12.12 | Invoice class implements IPayable. (Part 3 of 4.)

60 // return string representation of Invoice object

61 public override string ToString()

62 {

63 return string.Format(

64 "{0}: \n{l}: {2} (43}) \n{4}: {5} \n{6}: {7:C}",

65 "invoice', "part number”, PartNumber, PartDescription,
66 "gquantity"”, Quantity, "price per item'", PricePerItem);
67 } // end method ToString

68

69 // method required to carry out contract with interface IPayable
70 public decimal GetPaymentAmount()

71 {

72 return Quantity * PricePerItem; // calculate total cost
73 } // end method GetPaymentAmount

74 } // end class Invoice

Fig. 12.12 | Invoice class implements IPayable. (Part 4 of 4.)

12.7.3 Creating Class Invo1ice (Cont.)

v C# does not allow derived classes to inherit from more than
one base class, but it does allow a class to implement any
number of Interfaces.

» To implement more than one interface, use a comma-
separated list of interface names after the colon (:) in the
class declaration.

» When a class inherits from a base class and implements one
or more interfaces, the class declaration must list the base-

class name before any interface names.

12.7.4 Modifying Class Employee to <>
Implement Interface IPayable

» Figure 12.13 contains the Employee class, modified to
Implement interface 1Payable.

1 // Fig. 12.13: Employee.cs

2 // Employee abstract base class.

3 public abstract class Employee : IPayable

4 {

5 // read-only property that gets employee's first name

6 public string FirstName { get; private set; }

7

8 // read-only property that gets employee's last name

9 public string LastName { get; private set; }

10

11 // read-only property that gets employee's social security number
12 public string SocialSecurityNumber { get; private set; }
i3

14 // three-parameter constructor

15 public Employee(string first, string last, string ssn)
16 {

17 FirstName = first;

18 LastName = Tast;

19 SocialSecurityNumber = ssn;
20 } // end three-parameter Employee constructor
21

Fig. 12.13 | Employee abstract base class. (Part | of 2.)

22 // return string representation of Employee object

23 public override string ToString()

24 {

25 return string.Format("{0} {l}\nsocial security number: {2}",

26 FirstName, LastName, SocialSecurityNumber);

27 } // end method ToString

28

29 // Note: We do not implement IPayable method GetPaymentAmount here, so
30 // this class must be declared abstract to avoid a compilation error.
31 public abstract decimal GetPaymentAmount();

32 } // end abstract class Employee

Fig. 12.13 | Employee abstract base class. (Part 2 of 2.)

12.7.5 Moditying Class SalariedEmployee
for Use with IPayable

» Figure 12.14 contains a modified version of class
SalariedEmployee that extends Employee and
Implements method GetPaymentAmount.

» The remaining Emp loyee derived classes also must be
modified to contain method GetPaymentAmount in place
of Earnings to reflect the fact that Emp loyee now
Implements 1Payable.

I // Fig. 12.14: SalariedEmployee.cs

2 // SalariedEmployee class that extends Employee.

3 using System;

4

5 public class SalariedEmployee : Employee

6 {

7 private decimal weeklySalary;

8

9 // four-parameter constructor

10 public SalariedEmployee(string first, string last, string ssn,
11 decimal salary) : base(first, last, ssn)

12 {

13 WeeklySalary = salary; // validate salary via property
14 } // end four-parameter SalariedEmployee constructor

15

Fig. 12.14 | SalariedEmployee class that extends Employee. (Part | of 3.)

16 // property that gets and sets salaried employee's salary

17 public decimal WeeklySalary

I8 {

19 get

20 {

21 return weeklySalary;

22 } // end get

23 set

24 {

25 if (value >= 0) // validation

26 weeklySalary = value;

27 else

28 throw new ArgumentOutOfRangeException("WeeklySalary",
29 value, '"WeeklySalary must be >= 0");
30 } // end set

31 } // end property WeeklySalary

32

33 // calculate earnings; implement interface IPayable method
34 // that was abstract in base class Employee

35 public override decimal GetPaymentAmount()

36 {

37 return WeeklySalary;

38 } // end method GetPaymentAmount

Fig. 12.14 | SalariedEmployee class that extends Employee. (Part 2 of 3.)

39

40 // return string representation of SalariedEmployee object

41 public override string ToString()

42 {

43 return string.Format("salaried employee: {0}\n{l}: {2:C}",
44 base.ToString(), "weekly salary', WeeklySalary);

45 } // end method ToString

46 1} // end class SalariedEmployee

Fig. 12.14 | SalariedEmployee class that extends Employee. (Part 3 of 3.)

12.7.5 Moditying Class SalariedEmployee <>
for Use with IPayable

» When a class implements an interface, the same /s-3
relationship provided by inheritance applies.

Software Engineering Observation 12.4

Inheritance and interfaces are similar in their
implementation of the is-a relationship. An object of a
class that implements an interface may be thought of as
an object of that interface type. An object of any derived
classes of a class that implements an interface also can be
thought of as an object of the interface type.

Software Engineering Observation 12.5

The 1s-a relationship that exists between base classes and
derived classes, and between interfaces and the classes
that implement them, holds when passing an object to a
method. When a method parameter receives an argument
of a base class or interface type, the method
polymorphically processes the object received as an
argument.

12.7.6 Using Intertace IPayable to Process
Invoices and Employees Polymorphically

» PayablelnterfaceTest (Fig. 12.15)
Illustrates that interface 1Payable can be used to
processes a set of Invoirces and Employees
polymorphically in a single app.

<>

Software Engineering Observation 12.6

All methods of class object can be called by using a
reference of an interface type—the reference refers to an
object, and all objects inherit the methods of class
object.

CO~NOUNDE WN =

10
11
12
13
14
15
16
17
18
19
20
21
22

// Fig. 12.15: PayablelnterfaceTest.cs
// Tests 1interface IPayable with disparate classes.
using System;

public class PayablelnterfaceTest

{

public static void Main(string[] args)

{

// create four-element IPayable array
IPayable[] payableObjects = new IPayable[4];

// populate array with objects that implement IPayable

payableObjects[0] = new Invoice("01234", "seat'™, 2, 375.00M);

payableObjects[1] = new Invoice("56789", "tire'", 4, 79.95M);

payableObjects[2] = new SalariedEmployee("John", "Smith",
"111-11-1111", 800.00M);

payableObjects[3] = new SalariedEmployee("Lisa", "Barnes",
""888-88-8888", 1200.00M);

Console.WriteLine(
"Invoices and Employees processed polymorphically:\n");

Fig. 12.15 | Tests interface IPayable with disparate classes. (Part | of 3.)

23 // generically process each element in array payableObjects

24 foreach (var currentPayable in payableObjects)

25 {

26 // output currentPayable and its appropriate payment amount
27 Console.WriteLine("{0}\npayment due: {1:C}\n",

28 currentPayable, currentPayable.GetPaymentAmount());

29 } // end foreach

30 } // end Main

31 } // end class PayablelnterfaceTest

Invoices and Employees processed polymorphically:

invoice:
part number: 01234 (seat)
quantity: 2

price per item: $375.00
payment due: $750.00

Fig. 12.15 | Tests interface IPayable with disparate classes. (Part 2 of 3.)

invoice:

part number: 56789 (tire)
quantity: 4

price per item: $79.95
payment due: $319.80

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00

payment due: $800.00

salaried employee: Lisa Barnes
social security number: 888-88-8888
weekly salary: $1,200.00

payment due: $1,200.00

Fig. 12.15 | Tests interface IPayable with disparate classes. (Part 3 of 3.)

12.7.7 Common Interfaces of the .NET <
Framework Class Library

» Figure 12.16 overviews several commonly used
Framework Class Library interfaces.

Interface Description
IComparable As you learned in Chapter 3, C# contains several comparison operators (e.g., <,
<=, >, >=, ==, | =) that allow you to compare simple-type values. In Section 12.8

you'll see that these operators can be defined to compare two objects. Interface
IComparable can also be used to allow objects of a class that implements the
interface to be compared to one another. The interface contains one method,
CompareTo, that compares the object that calls the method to the object passed
as an argument to the method. Classes must implement CompareTo to return a
value indicating whether the object on which it’s invoked is less than (negative
integer return value), equal to (0 return value) or greater than (positive integer
return value) the object passed as an argument, using any criteria you specify.
For example, if class Employee implements IComparable, its CompareTo method
could compare Employee objects by their earnings amounts. Interface ICompara-
ble is commonly used for ordering objects in a collection such as an array. We
use IComparable in Chapter 20, Generics, and Chapter 21, Collections.

Fig. 12.16 | Common interfaces of the .NET Framework Class Library. (Part |
of 3.)

Interface Description

IComponent Implemented by any class that represents a component, including Graphical
User Interface (GUI) controls (such as buttons or labels). Interface IComponent
defines the behaviors that components must implement. We discuss IComponent
and many GUI controls that implement this interface in Chapter 14, Graphical
User Interfaces with Windows Forms: Part 1, and Chapter 15, Graphical User
Interfaces with Windows Forms: Part 2.

IDisposable Implemented by classes that must provide an explicit mechanism for releasing
resources. Some resources can be used by only one program at a time. In addi-
tion, some resources, such as files on disk, are unmanaged resources that, unlike
memory, cannot be released by the garbage collector. Classes that implement
interface IDisposable provide a Dispose method that can be called to explicitly
release resources. We discuss IDisposable briefly in Chapter 13, Exception
Handling: A Deeper Look. You can learn more about this interface at
msdn.microsoft.com/en-us/library/system.idisposable.aspx. The MSDN
article /mplementing a Dispose Method at msdn.microsoft.com/en-us/library/
fs2xkftw.aspx discusses the proper implementation of this interface in your
classes.

Fig. 12.16 | Common interfaces of the .NET Framework Class Library. (Part 2
of 3.)

Interface Description

IEnumerator Used for iterating through the elements of @ collection (such as an array) one ele-
ment at a time. Interface IEnumerator contains method MoveNext to move to
the next element in a collection, method Reset to move to the position before
the first element and property Current to return the object at the current loca-
tion. We use IEnumerator in Chapter 21.

Fig. 12.16 | Common interfaces of the .NET Framework Class Library. (Part 3
of 3.)

12.8 Operator Overloading

» You can overload most operators to make them sensitive to the context in
which they are used.

Class ComplexNumber

» Class ComplexNumber (Fig. 12.17) overloads the plus (+), minus (-) and
multiplication (*) operators to enable programs to add, subtract and
multiply instances of class Comp lexNumber using common
mathematical notation.

I // Fig. 12.17: ComplexNumber.cs

2 // Class that overloads operators for adding, subtracting
3 // and multiplying complex numbers.

4 using System;

5

6 public class ComplexNumber

7 {

8 // read-only property that gets the real component

9 public double Real { get; private set; }

10

11 // read-only property that gets the imaginary component
12 public double Imaginary { get; private set; }

13

14 // constructor

15 public ComplexNumber(double a, double b)

16 {

17 Real = a;

18 Imaginary = b;

19 } // end constructor
20

Fig. 12.17 | Class that overloads operators for adding, subtracting and
multiplying complex numbers. (Part | of 3.)

21 // return string representation of ComplexNumber

22 public override string ToString()

23 {

24 return string.Format(({0} {1} {2}1)",

25 Real, (Imaginary < 0 7 "-" : "4"), Math.Abs(Imaginary));
26 } // end method ToString

27

28 // overload the addition operator

29 public static ComplexNumber operator+ (

30 ComplexNumber x, ComplexNumber y)

31 {

32 return new ComplexNumber(x.Real + y.Real,
33 x.Imaginary + y.Imaginary);

34 } // end operator +

35

36 // overload the subtraction operator

37 public static ComplexNumber operator- (

38 CompTlexNumber x, ComplexNumber y)

39 {

40 return new ComplexNumber(x.Real - y.Real,
41 x.Imaginary - y.Imaginary);

42 } // end operator -

43

Fig. 12.17 | Class that overloads operators for adding, subtracting and
multiplying complex numbers. (Part 2 of 3.)

44 // overload the multiplication operator

45 public static ComplexNumber operator* (

46 ComplexNumber x, ComplexNumber y)

47 {

48 return new ComplexNumber(

49 x.Real * y.Real - x.Imaginary * y.Imaginary,
50 x.Real * y.Imaginary + y.Real * x.Imaginary);
51 } // end operator *

52 } // end class ComplexNumber

Fig. 12.17 | Class that overloads operators for adding, subtracting and
multiplying complex numbers. (Part 3 of 3.)

12.8 Operator Overloading (Cont.)

» Keyword operator, followed by an operator
symbol, indicates that a method overloads the

specified operator.

» Methods that overload binary operators must take two
arguments—the first argument is the /eft operand, and

the second argument is the r/ght operand.
» Overloaded operator methods must be publ 1c and
static.

E Software Engineering Observation 12.7

Overload operators to perform the same function or
similar functions on class objects as the operators
perform on objects of simple types. Avoid nonintuitive
use of operators.

Software Engineering Observation 12.8

At least one parameter of an overloaded operator method
must be a reference to an object of the class in which the
operator is overloaded. This prevents you from changing
how operators work on simple types.

N3
12.8 Operator Overloading (Cont.)

Class Comp IexNumber

» Class ComplexTest (Fig. 12.18) demonstrates the
overloaded operators for adding, subtracting and
multiplying Comp lexNumbers.

I // Fig. 12.18: ComplexTest.cs

2 // Overloading operators for complex numbers.

3 using System;

4

5 public class ComplexTest

6 {

7 public static void Main(string[] args)

8 {

9 // declare two variables to store complex numbers

10 // to be entered by user

11 ComplexNumber x, vy;

12

13 // prompt the user to enter the first complex number

14 Console.Write("Enter the real part of complex number x: ");
15 double realPart = Convert.ToDouble(Console.ReadLine());

16 Console.Write(

17 "Enter the imaginary part of complex number x: ");

18 double imaginaryPart = Convert.ToDouble(Console.ReadLine());
19 X = new ComplexNumber(realPart, imaginaryPart);
20

Fig. 12.18 | Overloading operators for complex numbers. (Part | of 3.)

21 // prompt the user to enter the second complex number

22 Console.Write("\nEnter the real part of complex number y: ");
23 realPart = Convert.ToDouble(Console.ReadlLine());

24 Console.Write(

25 "Enter the imaginary part of complex number y: ");
26 imaginaryPart = Convert.ToDouble(Console.ReadlLine());
27 y = new ComplexNumber(realPart, imaginaryPart);

28

29 // display the results of calculations with x and y

30 Console.WriteLine();

31 Console.WriteLine("{0} + {1} = {2}, X, Yy, X + Y);
32 Console.WriteLine("{0} - {1} = {2}, X, vy, X - VY);

33 Console.WriteLine("{0} * {1} = {2}, X, y, X * y);

34 } // end method Main

35 } // end class ComplexTest

Fig. 12.18 | Overloading operators for complex numbers. (Part 2 of 3.)

Enter the real part of complex number x: 2
Enter the imaginary part of complex number x: 4

Enter the real part of complex number y: 4
Enter the imaginary part of complex number y: -2

(2 + 41) + (4 - 2i) = (6 + 21)
@2+ 4i) - 4 - 21) = (-2 + 61)
2+ 4i) * (4 - 21) = (16 + 121)

Fig. 12.18 | Overloading operators for complex numbers. (Part 3 of 3.)

	Chapter 12�OOP: Polymorphism, Interfaces and Operator Overloading
	Slide Number 2
	Slide Number 3
	12.6 sealed Methods and Classes (Cont.)
	Slide Number 5
	12.7 Case Study: Creating and Using Interfaces
	Slide Number 7
	12.7 Case Study: Creating and Using Interfaces (Cont.)
	Slide Number 9
	12.7 Case Study: Creating and Using Interfaces (Cont.)
	12.7 Case Study: Creating and Using Interfaces (Cont.)
	12.7.1 Developing an IPayable Hierarchy
	Slide Number 13
	Slide Number 14
	12.7.1 Developing an IPayable Hierarchy (Cont.)
	Slide Number 16
	12.7.2 Declaring Interface IPayable
	Slide Number 18
	12.7.3 Creating Class Invoice
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	12.7.3 Creating Class Invoice (Cont.)
	12.7.4 Modifying Class Employee to Implement Interface IPayable
	Slide Number 26
	Slide Number 27
	12.7.5 Modifying Class SalariedEmployee for Use with IPayable
	Slide Number 29
	Slide Number 30
	Slide Number 31
	12.7.5 Modifying Class SalariedEmployee for Use with IPayable
	Slide Number 33
	Slide Number 34
	12.7.6 Using Interface IPayable to Process Invoices and Employees Polymorphically
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	12.7.7 Common Interfaces of the .NET Framework Class Library
	Slide Number 41
	Slide Number 42
	Slide Number 43
	12.8 Operator Overloading
	Slide Number 45
	Slide Number 46
	Slide Number 47
	12.8 Operator Overloading (Cont.)
	Slide Number 49
	Slide Number 50
	12.8 Operator Overloading (Cont.)
	Slide Number 52
	Slide Number 53
	Slide Number 54

