
Visual C# 2012 How to Program







 Overloaded methods are often used to perform similar 
operations on different types of data. 

 To understand the motivation for generic methods, let’s begin 
with an example (Fig. 20.1) that contains three overloaded 
DisplayArray methods (lines 23–29, lines 32–38 and lines 
41–47). 

 These methods display the elements of an int array, a double
array and a char array, respectively. 

 Soon, we’ll reimplement this program more concisely and 
elegantly using a single generic method









 Figure 20.3 reimplements the app of Fig. 20.1 using a 
generic DisplayArray method (lines 24–30). 

 Note that the DisplayArray method calls in lines 
16, 18 and 20 are identical to those of Fig. 20.1, the 
outputs of the two apps are identical and the code in 
Fig. 20.3 is 17 lines shorter than that in Fig. 20.1. 

 As illustrated in Fig. 20.3, generics enable us to create 
and test our code once, then reuse it for many different 
types of data. 

 This demonstrates the expressive power of generics. 















IComparable<T> Inter face 
 It’s possible to compare two objects of the same type if that 

type implements the generic interface IComparable<T> (of 
namespace System). 

 A benefit of implementing interface IComparable<T> is 
that IComparable<T> objects can be used with the sorting
and searching methods of classes in the 
System.Collections.Generic namespace—we 
discuss those methods in Chapter 21. 

 The structures in the Framework Class Library that correspond 
to the simple types all implement this interface. 



Specifying Type Constraints
 Even though IComparable objects can be compared, they 

cannot be used with generic code by default, because not all 
types implement interface IComparable<T>. 

 However, we can restrict the types that can be used with a 
generic method or class to ensure that they meet certain 
requirements. 

 This feature—known as a type constraint—restricts the type of 
the argument supplied to a particular type parameter. 



 Figure 20.4 declares method Maximum (lines 20–34) 
with a type constraint that requires each of the 
method’s arguments to be of type 
IComparable<T>. 

 This restriction is important, because not all objects 
can be compared. 

 However, all IComparable<T> objects are 
guaranteed to have a CompareTo method that can 
be used in method Maximum to determine the largest 
of its three arguments.







 C# provides several kinds of type constraints. 
 A class constraint indicates that the type argument must 

be an object of a specific base class or one of its 
subclasses. 

 An interface constraint indicates that the type 
argument’s class must implement a specific interface. 

 The type constraint in line 21 is an interface constraint, 
because IComparable<T> is an interface. 



 You can specify that the type argument must be a 
reference type or a value type by using the reference-
type constraint (class) or the value-type constraint 
(struct), respectively. 

 Finally, you can specify a constructor constraint—
new()—to indicate that the generic code can use 
operator new to create new objects of the type 
represented by the type parameter. 



 If a type parameter is specified with a constructor 
constraint, the type argument’s class must provide a 
public parameterless or default constructor to ensure 
that objects of the class can be created without passing 
constructor arguments; otherwise, a compilation error 
occurs.

 It’s possible to apply multiple constraints to a type 
parameter. 



 To do so, simply provide a comma-separated list of 
constraints in the where clause. 

 If you have a class constraint, reference-type constraint 
or value-type constraint, it must be listed first—only 
one of these types of constraints can be used for each 
type parameter. 

 Interface constraints (if any) are listed next. 
 The constructor constraint is listed last (if there is one).


	Chapter 20�Generics
	Slide Number 2
	Slide Number 3
	20.2 Motivation for Generic Methods
	Slide Number 5
	Slide Number 6
	Slide Number 7
	20.3 Generic-Method Implementation 
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	20.4 Type Constraints
	20.4 Type Constraints (cont.)
	20.4 Type Constraints (cont.)
	Slide Number 18
	Slide Number 19
	20.4 Type Constraints (cont.)
	20.4 Type Constraints (cont.)
	20.4 Type Constraints (cont.)
	20.4 Type Constraints (cont.)

