
Visual C# 2012 How to Program







 A generic method may be overloaded. 
 Each overloaded method must have a unique signature 

(as discussed in Chapter 7). 
 A class can provide two or more generic methods with 

the same name but different method parameters. 
 A generic method can be overloaded by nongeneric 

methods with the same method name. 
 When the compiler encounters a method call, it 

searches for the method declaration that best matches 
the method name and the argument types specified in 
the call. 



 With a generic class, you can use a simple, concise 
notation to indicate the actual type(s) that should be 
used in place of the class’s type parameter(s). 

 At compilation time, the compiler ensures your code’s 
type safety, and the runtime system replaces type 
parameters with type arguments to enable your client 
code to interact with the generic class.



 One generic Stack class, for example, could be the 
basis for creating many Stack classes (e.g., “Stack
of double,” “Stack of int,” “Stack of char,” 
“Stack of Employee”). 

 Figure 20.5 presents a generic Stack class 
declaration. 

 This class should not be confused with the class 
Stack from namespace 
System.Collections.Generics. 









 Classes FullStackException (Fig. 20.6) and 
EmptyStackException (Fig. 20.7) each provide a 
parameterless constructor, a one-argument constructor 
of exception classes (as discussed in Section 13.8) and 
a two-argument constructor for creating a new 
exception using an existing one. 

 The parameterless constructor sets the default error 
message while the other two constructors set custom 
error messages.







 Now, let’s consider an app (Fig. 20.8) that uses the 
Stack generic class. 

















 Figure 20.9 declares generic method TestPush (lines 
33–54) to perform the same tasks as 
TestPushDouble and TestPushInt in Fig. 
20.8—that is, Push values onto a Stack<T>. 

 Similarly, generic method TestPop (lines 57–79) 
performs the same tasks as TestPopDouble and 
TestPopInt in Fig. 20.8—that is, Pop values off a 
Stack<T>.












	Chapter 20�Generics
	Slide Number 2
	Slide Number 3
	20.5 Overloading Generic Methods
	20.6 Generic Classes
	20.6 Generic Classes (cont.)
	Slide Number 7
	Slide Number 8
	Slide Number 9
	20.6 Generic Classes (cont.)
	Slide Number 11
	Slide Number 12
	20.6 Generic Classes (cont.)
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	20.6 Generic Classes (cont.)
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26

