EXAMPLE 1. For an equilateral triangle, $k_1 = k_2 = k_3 = 2/3$. It is convenient to write $x_1 = -1$, $x_2 = 1$, and $x_3 = \infty$ and to use equation (2), with $z_0 = 1$, A = 1, and B = 0. The transformation then becomes

(3)
$$w = \int_{1}^{z} (s+1)^{-2/3} (s-1)^{-2/3} ds.$$

The image of the point z = 1 is clearly w = 0; that is, $w_2 = 0$. If z = -1 in this integral, one can write s = x, where -1 < x < 1. Then

$$x + 1 > 0$$
 and $arg(x + 1) = 0$,

while

$$|x-1| = 1-x$$
 and $arg(x-1) = \pi$.

Hence

(4)
$$w = \int_{1}^{-1} (x+1)^{-2/3} (1-x)^{-2/3} \exp\left(-\frac{2\pi i}{3}\right) dx$$

$$= \exp\left(\frac{\pi i}{3}\right) \int_{0}^{1} \frac{2 dx}{(1-x^{2})^{2/3}}$$

when z = -1. With the substitution $x = \sqrt{t}$, the last integral here reduces to a special case of the one used in defining the beta function (Exercise 5, Sec. 91). Let b denote its value, which is positive:

(5)
$$b = \int_0^1 \frac{2 \, dx}{(1 - x^2)^{2/3}} = \int_0^1 t^{-1/2} (1 - t)^{-2/3} \, dt = B\left(\frac{1}{2}, \frac{1}{3}\right).$$

The vertex w_1 is, therefore, the point (Fig. 182)

$$(6) w_1 = b \exp \frac{\pi i}{3}.$$

The vertex w_3 is on the positive u axis because

$$w_3 = \int_1^\infty (x+1)^{-2/3} (x-1)^{-2/3} dx = \int_1^\infty \frac{dx}{(x^2-1)^{2/3}}.$$

FIGURE 182

But the value of w_3 is also represented by integral (3) when z tends to infinity along the negative x axis; that is,

$$w_3 = \int_1^{-1} (|x+1||x-1|)^{-2/3} \exp\left(-\frac{2\pi i}{3}\right) dx$$
$$+ \int_{-1}^{-\infty} (|x+1||x-1|)^{-2/3} \exp\left(-\frac{4\pi i}{3}\right) dx.$$

In view of the first of expressions (4) for w_1 , then,

$$w_3 = w_1 + \exp\left(-\frac{4\pi i}{3}\right) \int_{-1}^{-\infty} (|x+1||x-1|)^{-2/3} dx$$
$$= b \exp\frac{\pi i}{3} + \exp\left(-\frac{\pi i}{3}\right) \int_{1}^{\infty} \frac{dx}{(x^2 - 1)^{2/3}},$$

or

$$w_3 = b \exp \frac{\pi i}{3} + w_3 \exp \left(-\frac{\pi i}{3}\right).$$

Solving for w_3 , we find that

$$(7) w_3 = b.$$

We have thus verified that the image of the x axis is the equilateral triangle of side b shown in Fig. 182. We can also see that

$$w = \frac{b}{2} \exp \frac{\pi i}{3}$$
 when $z = 0$.

When the polygon is a rectangle, each $k_j = 1/2$. If we choose ± 1 and $\pm a$ as the points x_i whose images are the vertices and write

(8)
$$g(z) = (z+a)^{-1/2}(z+1)^{-1/2}(z-1)^{-1/2}(z-a)^{-1/2},$$

where $0 \le \arg(z - x_i) \le \pi$, the Schwarz–Christoffel transformation becomes

(9)
$$w = -\int_0^z g(s) \, ds,$$

except for a transformation W = Aw + B to adjust the size and position of the rectangle. Integral (9) is a constant times the elliptic integral

$$\int_0^z (1 - s^2)^{-1/2} (1 - k^2 s^2)^{-1/2} ds \qquad \left(k = \frac{1}{a}\right),$$

but the form (8) of the integrand indicates more clearly the appropriate branches of the power functions involved.

EXAMPLE 2. Let us locate the vertices of the rectangle when a > 1. As shown in Fig. 183, $x_1 = -a$, $x_2 = -1$, $x_3 = 1$, and $x_4 = a$. All four vertices can be described in terms of two positive numbers b and c that depend on the value of a in the following manner:

(10)
$$b = \int_0^1 |g(x)| dx = \int_0^1 \frac{dx}{\sqrt{(1 - x^2)(a^2 - x^2)}},$$

(11)
$$c = \int_{1}^{a} |g(x)| dx = \int_{1}^{a} \frac{dx}{\sqrt{(x^{2} - 1)(a^{2} - x^{2})}}.$$

If -1 < x < 0, then

$$arg(x+a) = arg(x+1) = 0$$
 and $arg(x-1) = arg(x-a) = \pi$;

hence

$$g(x) = \left[\exp\left(-\frac{\pi i}{2}\right)\right]^2 |g(x)| = -|g(x)|.$$

If -a < x < -1, then

$$g(x) = \left[\exp\left(-\frac{\pi i}{2}\right) \right]^3 |g(x)| = i|g(x)|.$$

Thus

$$w_1 = -\int_0^{-a} g(x) dx = -\int_0^{-1} g(x) dx - \int_{-1}^{-a} g(x) dx$$
$$= \int_0^{-1} |g(x)| dx - i \int_{-1}^{-a} |g(x)| dx = -b + ic.$$

It is left to the exercises to show that

(12)
$$w_2 = -b, \quad w_3 = b, \quad w_4 = b + ic.$$

The position and dimensions of the rectangle are shown in Fig. 183.

EXAMPLE 1. Let us map the half plane $y \ge 0$ onto the semi-infinite strip

$$-\frac{\pi}{2} \le u \le \frac{\pi}{2}, \quad v \ge 0.$$

We consider the strip as the limiting form of a triangle with vertices w_1 , w_2 , and w_3 (Fig. 184) as the imaginary part of w_3 tends to infinity.

The limiting values of the exterior angles are

$$k_1 \pi = k_2 \pi = \frac{\pi}{2}$$
 and $k_3 \pi = \pi$.

We choose the points $x_1 = -1$, $x_2 = 1$, and $x_3 = \infty$ as the points whose images are the vertices. Then the derivative of the mapping function can be written

$$\frac{dw}{dz} = A(z+1)^{-1/2}(z-1)^{-1/2} = A'(1-z^2)^{-1/2}.$$

Hence $w = A' \sin^{-1} z + B$. If we write A' = 1/a and B = b/a, it follows that

$$z = \sin(aw - b).$$

This transformation from the w to the z plane satisfies the conditions z=-1 when $w=-\pi/2$ and z=1 when $w=\pi/2$ if a=1 and b=0. The resulting transformation is

مناقشة تمارين

Schwarz-Christoffel Transformation

From 1-5

مناقشة بعض مسائل التكاملات الحقيقية