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— OBJECTIVES

1.‘,‘Given a function (completely or incompletely specified) of three to five
variables, plot it on a karnaugh map. The function may be given in minterm,
maxterm, or algebraic form.

S

2. Determine the essential prime implicants of a function from a map.

3. Obtain the minimum sum-of-products or minimum product-of-sums form of
a function from the map.

4. Determine all of the prime implicants of a function from a map.

5. Understand the relation between operations performed using the map and the
corresponding algebraic operations. -/
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KARNAUGH MAPS

V

Sﬂitching functions can generally be simplified by using the algebraic
techniques

described In Unit 3. However, two problems arise when algebraic procedures
are used:

1. The procedures are difficult to apply in a systematic way.
2. It is difficult to tell when you have arrived at a minimum solution.

The Karnaugh map method studied in this unit and the Quine-McCluskey
procedure studied in Unit 6 overcome these difficulties by providing systematic
methods for simplifying switching functions. =/
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\Sﬁ MINIMUM FORMS OF SWITCHING FUNCTIONS

- When a function is realized using AND and OR gates, the cost of realizing the function is
directly related to the number of gates and gate inputs used.

* The karnaugh map techniques developed in this unit lead directly to minimum cost
two-level circuits composed of AND and OR gates.

« An expression consisting of a sum of product terms corresponds directly to a two-level
circuit composed of a group of AND gates feeding a single OR gate (see figure 2-5).

 Similarly, a product-of sums expression corresponds to a two-level circuit composed of OR
gates feeding a single AND gate (see figure 2-6).

=
e Therefore, to find minimum cost two-level AND-OR gate circuits, we must find )
minimum expressions in sum-of-products or product-of-sums form.
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\)'L/ MINIMUM FORMS OF SWITCHING FUNCTIONS
o Amlnlmum sum-of-products expression for a function is defined as a
sum of product terms which (a) has a minimum number of terms and (b) of all
those expressions which have the same minimum number of terms, has a
minimum number of literals.

* The minimum sum of products corresponds directly to a minimum two-level gate
circuit which has (a) a minimum number of gates and (b) a minimum Number of
gate inputs.

 Unlike the minterm expansion for a function, the minimum sum of products |§
not necessarily unique; that is, a given function may have two different minimum
sum-of-products forms, each with the same number of terms and the same
number of literals. ) = )
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5.1MINIMUM FORMS OF SWITCHING FUNCTIONS

« Given a minterm expansion, the minimum sum-of products form can often be”
obtained by the following procedure:

1. Combine terms by using XY’+XY = X. Do this repeatedly to eliminate as
many literals as possible. A given term may be used more than once because

X+ X =X.

2. Eliminate redundant terms by using the consensus theorem or other theorems.
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5.1MINIMUM FORMS OF SWITCHING FUNCTIONS
"/

EXA?VIPLE: Find a minimum sum-of-products expression for
Fla; b, ¢y =2m(0.1.2.5.6.7)
F= ab'c"+ a'b'c+ a'bc' + ab’'c + abc’ + abc

N N

= a'b’ + b'c + bc’ + ab (3-1)

None of the terms in the above expression can be eliminated by consensus. However,
combining terms in a different way leads directly to a minimum sum of products:

F= ab'c + a'b'ec + a'be’ + ab'c + abce' + abc

B a'b’ + bc' T ac (5-2)
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9.1/MINIMUM FORMS OF SWITCHING FUNCTIONS
» A'minimum product-of-sums expression for a function is defined as a
p?oduct of sum terms which (a) has a minimum number of factors, and (b) of all
those expressions which have the same number of factors, has a minimum
number of literals.

 Unlike the maxterm expansion, the minimum product-of-sums form of a function
IS not necessarily unigue.

» Given a maxterm expansion, the minimum product of sums can often be obtained
by a procedure similar to that used in the minimum sum-of-products case, except
that the theorem Is used to combine terms. D,
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INIMUM FORMS OF SWITCHING FUNCTION

~ Example

A+B+C+D)A+B+C+D)A+B +C+DYA +B +C+D)A+B+C +D)A +B+C +D)

=A+B+D) (ATB+C) B+C+D) (B+C+D)

el

=A+B+D (A+B'+() (C"+D)
—_—

~ climinate by consensus
=(A+ B +D)C + D) (5.3) _\
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— 5.2 TWO- AND THREE-VARIABLE KARNAUGH MAPS _
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« Just like a truth table, the karnaugh map of a function
specifies the value of the function for every combination of
values of the independent variables. A two-variable karnaugh
map is shown. The values of one variable are listed across
the top of the map, and the values of the other variable are
listed on the left side. Each square of the map corresponds to
a pair of values for A and B as indicated. 4
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7.2 TWO- AND THREE-VARIABLE KARNAUGH MAP

Ry

z.,lfigure 5-1 shows the truth table for a function F and the
corresponding Karnaugh map.

* Note that the value of F for A= B = 0 is plotted in the upper left
sqguare, and the other map entries are plotted in a similar way in
Figure 5-1(b).

 Each 1 on the map corresponds to a minterm of F.

* We can read the minterms from the map just like we can read them
from the truth table.



7.2 TWO- AND THREE-VARIABLE KARNAUGH MAP
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LA 1 in square 00 of Figure 5-1(c) indicates that AB’ is a minterm of F.
« Similarly, a 1 in square 01 indicates that AB is a minterm.

« Minterms in adjacent squares of the map can be combined since they
differ in only one variable.

* Thus, AB’ and AB combine to form A’, and this is indicated by looping
the corresponding 1's on the map in Figure 5-1(d).
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~_A.2TWO- AND THREE-VARIABLE KARNAUGH MAPS
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*tigure 5-2 shows a three-variable truth table and the corresponding

karnaugh map.

* The value of one variable (A) is listed across the top of the map, and the

values of the other two variables (B, C) are listed along the side of the map.

* The rows are labeled in the sequence 00, 01, 11, 10 so that values in

adjacent rows differ in only one variable.

* For each combination of values of the variables, the value of f is read from
\/

-/

the truth table and plotted in the appropriate map square.

>



\—jGUR{S—Z: Truth Table and Karnaugh Map for Three—Var\ibIe

Function
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OQ 5.2 TWO- AND THREE-VARIABLE KARNAUGH MAPS e

* For example,

for the mput combination ABC = (01, the wlte F=0 plotted In the square
{for which A= and BC = (1. For the combination ABC = 110, F = 1 is plotted

nthe A =1, BC = 10 square.




7.2 TWO- AND THREE-VARIABLE KARNAUGH MAP
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« Figure 5-3 shows the location of the minterms on a three-variable map.

* Minterms In adjacent squares of the map differ in only one variable and
therefore can be combined using the theorem XY’= XY + X.

* For example, minterm 011 (abc) Is adjacent to the three minterms with
which it can be combined—001 (a®’c), 010 (abc’), and 111 (abc).

 |n addition to squares which are physically adjacent, the top and
bottom rows of the map are defined to be adjacent because the
corresponding minterms in these rows differ in only one variable.

* Thus 000 and 010 are adjacent, and so are 100 and 110. o/
A AR W e )



\_/FIb'H‘R{E/S-& Location of Minterms on a Three-Variable Karanap

R
a
g bc O I
¥
100 00 0 -
101 100 is Ol I S
adjacent

=111 o 110 1 1 3 7
110 10 2 6

: /

(a) Binary notation (b) Decimal notation
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* Given the minterm expansion of a function, it can be plotted on a map
by placing 1’s in the squares which correspond to minterms of the
function and O’s in the remaining squares (the O’s may be omitted if

desired).

* Figure 5-4 shows the plot of F(a. b. ¢) =;111 + my+ ms.

* If Fis given as a maxterm expansion, the map is plotted by placing
O’s in the squares which correspond to the maxterms and then by
filling in the remaining squares with 1’s. Thus,

=/
Fla,b.c) = MyM, M, M, M, gives the sgme\rpap as figure 5-4. |
o/ N\ - Wi



FIGURE 5-4
Karnaugh Map of
F(a, b, ©) =

2 m(1, 3, 5) =

IT M(O, 2, 4, 6, 7)




~—~ 5.2 TWO- AND THREE-VARIABLE KARNAUGH MAPS —

* Figure 5-5 illustrates how product terms can be plotted on Karnaugh
maps. To plot the term b, 1’s are entered in the four squares of the
map where b = 1. The term bc’is 1 whenb =1 andc =0, so 1’s are
entered in the two squares in the bc = 10 row. The term ac’ is 1 when

a=1andc=0, so 1’s are entered in the a = 1 column in the rows

where ¢ = 0.



FIGURE 5-5: Karnaugh Maps for Product Terms
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| / O For example, given that
b Fla..b,¢c) — abc’ + Bleta’

we would plot the map as follows:

bc O !
1. The term abc’” is 1 when a =1 and bec = 10. so | 7N
we place a |1 1in the square which corresponds 0O 1
to the @ = 1 column and the bc = 10 row of the
map. 01 1 1
2. The term b’c is 1 when bec =01, so we place 1's /l’(( )
in both squares of the bc = 01 row of the map.

3. Theterm a’is 1 when a = 0. so we place 1's in 11 1
all the squares of the a = O column of the map. 2 /|'
(Note: Since there already i1s a 1 in the abc = 10 1 1
001 square, we do not have to place a second | " o N :
1 there because x + x = Xx.) \ /
abc’
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* Figure 5-6 illustrates how a simplified expression for a function can be derived

using a Karnaugh map.
* The function to be simplified is first plotted on a Karnaugh map in Figure 5-6(a).

* Terms in adjacent squares on the map differ in only one variable and can be
combined using the theorem XY’ + XY = X

* Thus a’b’c and a’bc combine to form ac, and a’b’c and ab’c combine to form

bec, as shown in Figure 5-6(b).



\// FIGURE 5-6: Simplification of a Three-Variable Function

\._/
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* Figure 5-6 illustrates how a simplified expression for a function can be derived

using a Karnaugh map.
* The function to be simplified is first plotted on a Karnaugh map in Figure 5-6(a).

* Terms in adjacent squares on the map differ in only one variable and can be
combined using the theorem XY’ + XY = X

* Thus a’b’c and a’bc combine to form ac, and a’b’c and ab’c combine to form

bec, as shown in Figure 5-6(b).
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The map for the complement of F (Figure J-7) 1s formed by replacing (s with
sand I's with 0's on the map of F. To simplify F', note that the terms n the top
row combine to form b'c’, and the terms in the bottom row combine to form be'.
Because b'c’ and be” differ in only one variable, the top and bottom rows can then
he combined to form a group of four I's, thus elimmating two variables and leav-
ing [, = ¢’ The remaining | combines, as shown, to form [, = ab, so the mini
sum-of-products form for F" 1s ¢" + ab.




U pulil
FIGURE 5-7: Complement of Map in Figure 5.6(a) @

Iy =b'c”" +bci=¢"




~ 5.2 TWO- AND THREE-VARIABLE KARNAUGH MAPS -~
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*If a function has two or more minimum sum-of-products

forms, all of these forms can be determined from a map.

* Figure 5-9 shows the two minimum solutions for

F =2m(0,1,2.586,7).
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FIGURE 5-9: Function with Two Minimum Forms

ol
P 8 |
(M) .-"T"‘-.,
P
01 1 1
e
11 1
N
10 (1 1)

F=a'h’” + bc’" 4+ ac
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— 5.3 FOUR-VARIABLE KARNAUGH MAPS &
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~¢ Figure 5-10 shows the location of minterms on a four-variable map.

* Each minterm is located adjacent to the four terms with which it can

combine.

* For example, m; (0101) could combine with m; (0001), m, (O100), m,
(0111), or m;5(1101) because it differs in only one variable from each of

the other minterms.

* The definition of adjacent squares must be extended so that not only are top
e’
and bottom rows adjacent as in the three-variable map, but the first and last
columns are also adjacent

= \/ \J v A /



— 5.3 FOUR-VARIABLE KARNAUGH MAPS —
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* This requires numbering the columns in the sequence 00, 01, 11, 10 so

that minterms O and 8, 1 and 9, etc., Are in adjacent squares.

FIGURE 5-10
Location of
Minterms on
Four-Variable
Karnaugh Map
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\/ \/J EXAMPLE 1

, o/
\:Map the following standard SOP expression on a karnaugh map:
ABC + ABC'+ ABC’+ ABC

Evaluate the expression as shown below. Place a | on the 3-varnable Karnaugh map in
Figure 4-29 for each standard product term 1n the expression.

ABC +~ ABC + ABC + ABC
001 010 110 3 A

AB 0 .

01 - - AR

i1 - | -—— ARC

10 | L 3¢
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\/ \/J EXAMPLE 2

o/
\:Map the following standard SOP expression on a karnaugh map:
ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

Evaluate the expression as shown below. Place a |1 on the 4-vanable Karnaugh map in
Figure 4-30 for each standard product term in the expression.

ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

0011 0100 1101 1111 1100 0001 1010
cD ABCD
= 00 or / 11 10
00 E VR  RBCD
o1 | _
ABCD —
11 ! !
et ot 4 a
\BCD — ]
10 | - \BCD

ABC D ABCD
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—/
;Map the following standard SOP expression on a karnaugh map:
A + AB + ABC.

The SOP expression is obviously not in standard form because each product term does not
have three variables. The first term is missing two varables, the second term i1s missing
one vanable, and the third term i1s standard. First expand the terms numerically as follows:

A + AB + ABC

000 100 110

001 101

010

011




EXAMPLE_3 CONTINUE

Map each of the resulting binary values by placing a | in the appropriate cell o
3-variable Karnaugh map in Figure 4-31.
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\o/
\;Map the following standard SOP expression on a karnaugh map:

BC + AB + ABC + ABCD + ABCD + ABCD

The SOP expression is obviously not in standard form because each product term does
not have four variables. The first and second terms are both missing two vanables, the

third term 1s missing one variable, and the rest of the terms are standard. First expand the
terms by including all combinations of the missing variables numerically as follows:

BC + AB + ABC + ABCD + ABCD + ABCD
0000 1000 1100 1010 0001 1011
0001 001 1101

1000 1010
1001 1011




% EXAMPLE_4 CONTNUE |

Map each of the resulting binary values by placing a | in the appropriate cell of the
4-variable Karnaugh map in Figure 4-32. Notice that some of the values in the expanded
expression are redundant.

CD ("
AR 00 0l 10

00 | !

01

i ! l

] | I l l




EXAMPLE 4a-28

Determine the product terms for the Kamaugh map in Figure 435 and write the result-
ing mintmum SOP expression.

D

P 00 o1 11 10
00
o1
11

FIGURE 4-35

Solution

Eliminate variables that are in a grouping 1in both complemented and uncomplemented
forms. In Figure 435, the product term for the S8-cell group i1s B because the cells
within that group contain both A and A. C and C. and D and D. which are eliminated.
The 4-cell group contains B. B. D, and D. leaving the variables A and C. which form the
product term AC. The 2-cell group contains B and B. leaving variables A, C. and D
which form the product term ACD. Notice how overlapping is used to maximize the
size of the groups. The resulting minimum SOP expression i1s the sum of these product
terms:

B + AC + ACD




Use a Kamaugh map to minimize the following standard SOP expression:
ABC + ABC + ABC + ABC + ABC

Solution
The binary values of the expression are

101 - O11 + O01 + 000 + 100
Map the standard SOP expression and group the cells as shown 1in Figure 437

. o
AR ) O 1 i
w0 @D
5 U-ﬂr——— AC

11

10 rl l%g

FIGURE 4-37

Notice the “wrap around™ 4-cell group that includes the top row and the bottom row
of 1s. The remamming 1 1s absorbed 1in an overlapping group of two cells. The group of
four ls produces a single variable term. B. This is determined by observing that within
the group. B is the only variable that does not change from cell to cell. The group of two
s produces a 2-variable term AC. This is determined by observing that within the
group. A and C do not change from one cell to the next. The product term for each
group i1s shown. The resulting minimum SOP expression i1s




