البرهان:

بما أن
$$(1)$$
 هما حلان للمعادلة $y_1(x), y_2(x)$ فإن $L[y_1(x)] = 0,$ $L[y_2(x)] = 0$
$$(1) = L[c_1y_1 + c_2y_2]$$
 الأيسر من $C_1L[y_1] + C_2L[y_2]$
$$= c_1L[y_1] + c_2L[y_2]$$
 الأيمن من $C_1L[y_1] = c_1(0) + c_2(0) = 0 = (1)$ أي أن $C_1L[y_1] = c_1(1)$ هو حل للمعادلة $C_1L[y_1] = c_1(1)$ و هو المطلوب.

نظرية (2):

 $y_1(x),\,y_2(x)$ وكانت $\alpha < x < \beta$ وكانت $p(x),\,q(x)$ دوال متصلة في الفترة هما حلان للمعادلة (1) بحيث أن:

$$y_1 y_2' - y_1' y_2 \neq 0$$
, $\forall x \in (\alpha, \beta)$ (2)

فإن التعبير

$$y(x) = c_1 y_1(x) + c_2 y_2(x)$$

هو الحل العام للمعادلة (1) حيث c_1, c_2 ثوابت.

<u>ملحوظة:</u>

يلاحظ أن الشرط (2) هو:

$$W(y_1, y_2) = \begin{vmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{vmatrix} \neq 0$$

وسوف نسمى هذا المحدد بـ Wronskian نسبة إلى العالم البولندي Wronski ويرمز له

المحاضرة الخامسة

معادلات تفاضلية عادية (208 ر)

المستوى الثاني (علوم الحاسب - الرياضيات - الفيزياء - الجيوفيزياء)

الحلول الأساسية للمعادلات المتجانسة:

لنعتبر المعادلة التفاضلية

$$L[y(x)] = \frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y = 0$$
 (1)

حيث p(x), q(x) دوال متصلة في الفترة $\alpha < x < \beta$ والمؤثر $\alpha < x < \beta$ يعرف كالأتي:

$$L\left[y\left(x\right)\right] = \left[\frac{d^{2}}{dx^{2}} + p\left(x\right)\frac{d}{dx} + q\left(x\right)\right]y\left(x\right)$$

فمثلاً·

$$L[x^2] = \left[\frac{d^2}{dx^2} + p(x)\frac{d}{dx} + q(x)\right]x^2$$
$$= 2 + 2x p(x) + x^2 q(x)$$

و على ذلك يمكن كتابة (1) باستخدام المؤثر [.] كالآتي:

$$L[y(x)] = 0 (1)$$

نظرية (1):

إذا كانت $y_1(x), y_2(x)$ هما حلان للمعادلة $y_1(x), y_2(x)$

 $c_1 y_1 + c_2 y_2$

هو أيضاً حل للمعادلة (1) حيث c_1, c_2 ثوابت.

W(x)

$$W(x) = W(y_1, y_2)$$

نظرية (3):

بالر مز

 $y_1(x), \;\;$ وإذا كانت الدوال $p(x), \; q(x)$ دوال متصلة في الفترة $p(x), \; q(x)$ وإذا كانت الدوال كانت الدوال $y_2(x)$

$$W(x) \equiv 0 \qquad \forall x \in (\alpha, \beta)$$

 (α, β) وذلك لأي نقطة x داخل الفترة $W(x) \neq 0$.

Mبمعنى أنه لا توجد نقطة x داخل الفترة (lpha,eta) تتلاشى عندها

البرهان:

حيث أن
$$y_1(x), y_2(x)$$
 هما حلان للمعادلة (1) إذن

$$y_1'' + py_1' + qy_1 = 0$$

$$y_2'' + py_2' + qy_2 = 0$$

بضرب الأولى في y_2 - والثانية في y_1 والجمع يكون

$$(y_1y_2'' - y_2y_1'') + p(y_1y_2' - y_1'y_2) = 0$$
 (*)

وحيث أن:

$$W(x) = y_1 y_2' - y_1' y_2$$

فإن:

 $\frac{dW}{dx} = y_1 y_2'' - y_1'' y_2$

بالتعويض في (*) نحصل على

$$\frac{dW}{dx} + pW = 0$$

وبحل المعادلة الأخيرة

$$W(x) = ce^{-\int_{-\infty}^{x} p(x)dx}$$
(3)

حيث c ثابت التكامل

وحيث أن الدالة الأسية لا تساوي صفراً فإن W(x) لا تساوي صفراً عند أي نقطة إلا إذا C=0 كانت C=0 وإذا كانت C=0 فإن C=0 فإن C=0 فإن C=0

نظرية (4):

 $y_1(x), y_2(x)$ وكان (α, β) وكان أي الفترة p(x), q(x) دوال متصلة في الفترة p(x), q(x) وكان الدوال p(x), q(x) فإن $p(x), y_2(x)$ ويكون الحل العام للمعادلة (1) بالصورة:

$$y(x) = c_1 y_1 + c_2 y_2$$

البرهان:

سوف نثبت أنه إذا كانت $0 \neq W(x) \neq 0$ فإن y_1, y_2 دوال مستقلة خطياً.

نضع

$$c_1 y_1(x) + c_2 y_2(x) = 0$$

بإجراء التفاضل

مثال (1):

بين أن $y_1(x) = x$ هو حل للمعادلة

$$(1-x^2)y'' - 2xy' + 2y = 0;$$
 $-1 < x < 1$

ثم أوجد الحل الثاني.

الحل

حيث أن

$$y_1'(x) = 1$$
, $y_1''(x) = 0$
 $y_1''(x) = 0$

أي أن $y_1=x$ هو حل للمعادلة ولإيجاد الحل الثاني نكتب المعادلة على الصورة (1) أي أن:

$$y'' - \frac{2x}{1 - x^2}y' + \frac{2}{1 - x^2}y = 0$$

$$p(x) = \frac{2x}{x^2 - 1}$$

$$\therefore W(x) = c \exp\left(-\int_{-\infty}^{x} \frac{2x}{x^2 - 1}dx\right)$$

$$= c \exp\left(\ln\left(\frac{1}{x^2 - 1}\right)\right)$$

$$= \frac{c}{x^2 - 1}$$

$$c_1 y_1'(x) + c_2 y_2'(x) = 0$$

وبحل المعادلتان المتجانستان الأخيرتان في المجهولين $c_1,\,c_2$ فإن محددة المعاملات

$$\begin{vmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{vmatrix} = W(y_1, y_2) \neq 0$$

أي أن الحل الوحيد للمعادلتين الأخيرتين هو الحل الصفري، أي $c_1 = c_2 = 0$

و على ذلك يكون y_1, y_2 مستقلان خطياً (وذلك إذا كان $W \neq 0$).

وقد بينا من النظرية السابقة أن التركيبة الخطية

$$c_1 y_1(x) + c_2 y_2(x)$$

هي أيضاً حل للمعادلة (1). وهو المطلوب.

نظرية (<u>5):</u>

(1) إذا كانت $y_2(x)$ هي أحد حلي المعادلة (1) فإن الحل الثاني $y_1(x)$ للمعادلة (1) يحقق العلاقة

$$y_2(x) = y_1(x) \int_{-\infty}^{x} \frac{W(x)}{y_1^2(x)} dx$$
 (4)

حيث

$$W(x) = ce^{-\int_{-\infty}^{x} p(x)dx}$$
(3)

وعلى ذلك يمكن حساب W(x) من W(x) واستخدام (4) لإيجاد الحل الثاني إذا علم الحل الأول.

ويلاحظ أن y_1, y_2 مستقلان خطياً. (أثبت ذلك).

$ar^2 + br + c = 0$

و هي تسمى <mark>بالمعادلة المميزة</mark> حلها يكون:

$$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

 $b^2 - 4ac = 0$ وتكون قيمتي r متساويتان إذا كانت

 $b^2 - 4ac > 0$ وتكون قيم r حقيقية مختلفة إذا كانت

 $b^2 - 4ac < 0$ تخيلية (مترافقة) إذا كانت r تخيلية وتكون قيم

وسوف ندرس كل حالة على حدة.

 $r_1 \neq r_2$ أولاً: إذا كانت r حقيقية،

ىيث

$$r_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \qquad r_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

وفي هذه الحالة يمكن إثبات أن:

$$y_1 = e^{r_1 x}, \qquad y_2 = e^{r_2 x}$$

دوال مستقلة، وعلى ذلك هما الحلان الأساسيان للمعادلة التفاضلية (1) كالأتي:

$$W(y_1, y_2) = \begin{vmatrix} e^{r_1 x} & e^{r_2 x} \\ r_1 e^{r_1 x} & r_2 e^{r_2 x} \end{vmatrix}$$

$$W(y_1,y_2;x) = (r_2 - r_1)e^{(r_1 + r_2)x}$$

وحيث أن $r_1-r_2
eq 0$ لذلك فإن الحلان مستقلان ويكون الحل العام

$$y(x) = c_1 e^{r_1 x} + c_2 e^{r_2 x}$$
 المعادلة (1) بالصورة:

حيث c_1, c_2 ثوابت اختيارية.

$$y_{2}(x) = cx \int \frac{1}{x^{2}(x^{2}-1)} dx$$

$$= cx \int \left(\frac{-1}{x^{2}} + \frac{1/2}{x-1} + \frac{-1/2}{x+1}\right) dx$$

$$= cx \left\{\frac{1}{x} + \frac{1}{2} \ln\left(\frac{x-1}{x+1}\right)\right\}$$

$$= c + \frac{cx}{2} \ln\left(\frac{x-1}{x+1}\right).$$

المعادلات المتجانسة ذات المعاملات الثابتة:

هي معادلات على الصورة:

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0 \tag{1}$$

حيث a, b, c ثوابت.

سوف نحاول أن نوجد الحل في الصورة e^{rx} حيث r ثابت مطلوب تعيينه. لذلك نفرض أن:

$$y = e^{rx}$$

وعلى ذلك يكون

$$y' = re^{rx}, y'' = r^2 e^{rx}$$

بالتعويض عن y, y', y'' في المعادلة (1) يكون

$$e^{rx}(ar^2 + br + c) = 0$$

وحيث أن $e^{rx} \neq 0$ فإن:

$$y_2(x) = y_1 \int \frac{W}{y_1^2} dx = y_1 \int \frac{e^{\frac{-b}{a}x}}{e^{\frac{-b}{a}x}} dx = y_1 \int dx = xy_1(x) = xe^{\frac{-b}{2a}x}$$

وعلى ذلك يكون الحل العام بالصورة:

$$y(x) = c_1 y_1 + c_2 x y_1$$

= $(c_1 + c_2 x)y_1$

مثال (2):

أوجد الحل العام للمعادلة:

$$y'' + 4y' + 4y = 0$$

الحل

المعادلة المميزة هي:

$$r^2 + 4r + 4 = 0$$

$$(r+2)^2=0$$

$$r_1 = r_2 = -2$$

$$y_1(x) = e^{-2x}$$

وعلى ذلك يكون الحل العام بالصورة:

$$y(x) = (c_1 + c_2 x)e^{-2x}$$
.

$b^2 - 4ac < 0$ ثالثاً: إذا كانت

فإن جذري المعادلة المميزة في هذه الحالة هما جذران مركبان مترافقان (وذلك a,b,c لأن a,b,c

أوجد الحل العام للمعادلة:

$$y'' + 5y' + 6y = 0$$

الحال

نفرض أن
$$y = e^{rx}$$
 وعلى ذلك يكون

$$y' = re^{rx}, \qquad y'' = r^2 e^{rx}$$

والمعادلة المميزة بالصورة

$$r^2 + 5r + 6 = 0$$

$$r_1 = -2, r_2 = -3$$

وعلى ذلك يكون الحل العام بالصورة:

$$y(x) = c_1 e^{-2x} + c_2 e^{-3x}$$

:فإن
$$b^2 - 4ac = 0$$
 فإن إذا كانت

$$r_1 = r_2 = \frac{-b}{2a}$$

وعلى ذلك يكون أحد الحلول هو:

$$y_1 = e^{\frac{-b}{2a}x}$$

ويكون المطلوب الآن إيجاد الحل الثاني والذي يكون مستقل خطياً عن y_1 . كما سبق فإن:

$$W(y_1, y_2; x) = e^{-\int \frac{b}{a} dx} = e^{\frac{-b}{a}x}$$

ويكون:

بالجمع والطرح يكون:

$$\cos x = \frac{1}{2} (e^{ix} + e^{-ix}), \qquad \sin x = \frac{1}{2i} (e^{ix} - e^{-ix})$$

نعود الآن للمعادلة الميزة التي جذر اها r_1, r_2 فإن الحلان للمعادلة التفاضلية هما

$$y_1 = e^{r_1 x} = e^{\lambda x + i\mu x}$$
$$y_2 = e^{\lambda x - i\mu x}$$

ولكى نبين أن هذان الحلان مستقلان فإن:

$$W(y_1, y_2; x) = \begin{vmatrix} e^{r_1 x} & e^{r_2 x} \\ r_1 e^{r_1 x} & r_2 e^{r_2 x} \end{vmatrix} = (r_2 - r_1) e^{(r_1 + r_2)x}$$

$$\neq 0$$

لأن $r_1 \neq r_2$ وعلى ذلك فإن v_1, v_2 حلان مستقلان خطياً.

نعود الآن للحل العام الذي يأخذ الصورة:

$$y(x) = c_1 y_1 + c_2 y_2$$

$$= c_1 e^{(\lambda + i\mu)x} + c_2 e^{(\lambda - i\mu)x}$$

$$= e^{\lambda x} \left(c_1 e^{i\mu x} + c_2 e^{-i\mu x} \right)$$

$$= e^{\lambda x} \left\{ c_1 (\cos \mu x + i \sin \mu x) + c_2 (\cos \mu x - i \sin \mu x) \right\}$$

$$= e^{\lambda x} \left\{ \left(c_1 + c_2 \right) \cos \mu x + i \left(c_1 - c_2 \right) \sin \mu x \right\}$$

$$= e^{\lambda x} \left\{ c_1 \cos \mu x + c_2 \sin \mu x \right\}.$$

$$r_1 = \lambda + i\mu$$
, $r_2 = \lambda - i\mu$

 $i=\sqrt{-1}$ حيث μ , λ حيث μ , كميات حقيقية،

والآن نترك ذلك جانباً وسوف نعود لـ r_1, r_2 بعد قليل ولنبدأ بتعريف الدالة

$$f(\theta) = \cos \theta + i \sin \theta \tag{*}$$

ويلاحظ أن:

$$f(0) = 1$$

بتفاضل (*) بالنسبة إلى heta يكون

$$\frac{df}{d\theta} = -\sin\theta + i\cos\theta$$
$$= i(\cos\theta + i\sin\theta)$$
$$= if$$
$$\frac{df}{f} = id\theta$$

بإجراء تكامل الطرفين، يكون

$$\ln f = i\theta + c$$

حيث أن θ = 0 عندما f = 1 عندما f عندما ومنها فإن

$$\ln f = i\theta$$

$$\therefore f(\theta) = \cos \theta + i \sin \theta = e^{i\theta}$$

والعلاقة الأخيرة تسمى بصيغة أويلر Euler's formula وعلى ذلك يكون:

$$\cos x + i \sin x = e^{ix}$$

$$\cos x - i \sin x = e^{-ix}$$

مثال (3):

أوجد الحل العام للمعادلة:

$$y'' + y' + y = 0$$

الحل

المعادلة المميزة هي:

$$r^2 + r + 1 = 0$$

$$\therefore r = \frac{-1}{2} \pm i \frac{\sqrt{3}}{2}$$

$$\therefore \lambda = \frac{-1}{2}, \quad \mu = \frac{\sqrt{3}}{2}$$

وعلى ذلك يكون الحل العام بالصورة:

$$y(x) = e^{\frac{-x}{2}} \left(c_1 \cos\left(\frac{\sqrt{3}}{2}x\right) + c_2 \sin\left(\frac{\sqrt{3}}{2}x\right) \right)$$