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The Secant Method

Newton’s method is an extremely powerful technique, but it has a mjor weakness: the need
to know the value of the derivative of f at each approximation. Frequently, f’(x) is far more
difficult and needs more arithmetic operations to calculate than f (x).
To circumvent the problem of the derivative evaluation in Newton’s method, we intro-
duce a slight variation. By definition,
F(puey = tim T TP,

X—>Pp—1 X — Pn—1

It p,_»> 1s close to p,_;, then

~ f(pn—i) — f(ﬁn—l) — f(pn—]) — f(f}ﬂ—g)

ff(,”ﬂ—l_) ~ _ _ _ _
Pn—2 — Pn—1 Pn—1 — Pn-2

Using this approximation for f’( p,—1) in Newton’s formula gives



F(pa=1)(Pn=1 — pn=2)
f(ﬁrz—l) — f(pn—i) ‘

This technique 1s called the Secant method and 1s presented in Algorithm 2.4. (See
Figure 2.10.) Starting with the two initial approximations pg and p, the approximation p, 1s
the x-intercept of the line joining ( po, f (po)) and (p1. f(p1)). The approximation ps 1s the
x-intercept of the line joining (py, f(p1)) and (p2, f(p2)), and so on. Note that only one
function evaluation 1s needed per step for the Secant method after p, has been determined.
In contrast, each step of Newton’s method requires an evaluation of both the function and
its derivative.

(2.12)

Pn = Pn—1 —
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Secant

To find a solution to f(x) — 0O given initial approximations g and py:

INPUT  initial approximations pg. 2 : tolerance 7TOL; maximum number of iterations Ng.

OUTPUT approximate solution p or message of failure.

Step T Setil= 2:
qgo — F(pPod:
g1 = JF(pi).

Step 2  While i = Ny do Steps 3—6.

Step 3 Setp =p1 —qi{p1 — pPo)/ (g1 — go). (Compute p;.)

Step d If |p — p,| = TOL then
OUTPUT (p)y. (The procedure was successfiul.)
STOP.

Step 65 Seti — i+ 1.

Step 6§ Setpg = py: (Update po.qgo-pPi-gi1-)
do =— 41:
P21 = P
g1 = JF(p).

Step S OUTPUT (*The method failed after Ny iterations, Ng
(The procedure was unsuccessjful.)
STOP. |
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Example 2

Table 2.5

Secant
L FI‘I
0 0.5
1 0. 7853981635
2 0.7363841388
3 0.7390581392
4 0.7390851493
S5 0.7390851332

Newton
P

Wbk = D 2

0.7853951635
0.7395361337
0.7390851781
0.7390851332
0.7390851332

Use the Secant method to find a solution to x = cosx, and compare the approximations
with those given in Example 1 which applied Newton’s method.

Solution In Example 1 we compared fixed-point iteration and Newton’s method starting
with the initial approximation py, = /4. For the Secant method we need two initial ap-
proximations. Suppose we use pg = 0.5 and p;, = /4. Succeeding approximations are
generated by the formula

(Pn—t — Pan—2)(COSPy_y — Pp_1)
Pn = Pn_1 — . formn = 2.
':':'Ds'pn—l _p:r—J] - [CDSPH—E _p:r—2)
These give the results in Table 2.5. |

Comparing the results in Table 2.5 from the Secant method and Newton’s method, we
see that the Secant method approximation ps is accurate to the tenth decimal place. whereas
Newton’s method obtained this accuracy by p;. For this example, the convergence of the
Secant method is much faster than functional iteration but slightly slower than Newton’s
method. This is generally the case. (See Exercise 14 of Section 2.4.)

Newton’s method or the Secant method is often used to refine an answer obtained by
another technique, such as the Bisection method, since these methods require good first
approximations but generally give rapid convergence.
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| 3 Interpolation and Polynomial Approximation



3.1

Interpolation and the Lagrange Polynomial

One of the most useful and well-known classes of functions mapping the set of real numbers
into itself is the algebraic polvnomials, the set of functions of the form

|

Pu(x) = anx” +an1x" + --- 4+ a1x + ao,

where n 15 a nonnegative integer and ag.....d, are real constants. One reason for their
importance is that they uniformly approximate continuous functions. By this we mean that
given any function, defined and continuous on a closed and bounded interval, there exists
a polynomial that is as “close™ to the given function as desired. This result is expressed
precisely in the Weierstrass Approximation Theorem. (See Figure 3.1.)
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Lagrange Interpolating Polynomials

The problem of determining a polynomial of degree one that passes through the distinct
points (xg. vp) and (x;.v;) is the same as approximating a function f for which f(xg) = wvo
and f(x;) = v by means of a first-degree polynomial interpolating., or agreecing with, the
values of f at the given points. Using this polynomial for approximation within the interval

civen by the endpoints is called polyvnomial interpolation.
Define the functions

Lo(x) — Q and IL,(x) = u
Xop — X X1 — Xo
The linear Lagrange interpolating polvnomial through (x5, vo) and (x;.v,) 1s

P(x) = Lo(x) F(X0) 4+ LX) F(x1) = 1 Fixo) + =22 rixg).

Xop — X X1 — Xo




A — X X —

P@x) = Lo() f (X0) + L1 () f(x1) = ———— [ (xo) + 1—""":',;'-“(;.:,;:.

Xp — X 1 — Xo

Note that
Fo(xp) = 1, Lo(x,) = 0, Ly(xp) = 0, and [F,(x;) =1,
which implies that
P(xg) =1 - fxpg) +0 - f(x:) = filxo) = »o
and
P(x,) =0- fixe) +1- Flx1) = Flx) = v

So F is the unigue polvnomial of degree at most one that passes through (xg. vp) and
(x1,¥1).



Example 1

and (5. 1).

Determine the linear Lagrange interpolating polynomial that passes through the points (2, 4)
Solution In this case we have

x —5
Lo(x) = ; =

_ x —2
5 = —E(l —5) and L;(x) = 5 _ 5 — E(I — 2).
SO
1 1 4 20 1
P(x) 2—5{1—51 -4+§f1—2] -1 = —EI—I— 3 + —x — — = —x + 6.
The graph of v = FP(x) is shown in Figure 3.3




Figure 3.3




To generalize the concept of linear interpolation, consider the construction of a poly-
nomial of degree at most . that passes through the n + 1 points

f.l'{}-_ f[-rﬂ}}- [-‘:I . f{IJ ,","a LR [x.!r- f{xfi:l}'

(See Figure 3.4.)

Figure 3.4
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In this case we first construct, for each & = 0.,1.....n., a function L, ;(x) with the
property that L, ;(x;) = 0 when i = k and L, (x;) = 1. To satisfy L, ;(x;) = 0 for each
i 7= k requires that the numerator of L, (x) contain the term

(X —xp)(x —xp) - - (X — X )X — Xpg ) - - - (0 — X))

To satisty L, i (xz) = 1. the denominator of L, (x) must be this same term but evaluated at
X = x;. Thus

L”“‘: [1} _ (.'-1' — Iﬂ} . . . l:_‘-L' — Ik_J}(I — '-"":F-'+I} .. . (.JII' _ _-_1-"‘} |

(X —Xp) - - (0 — X )0 — Xgpep) - - - (e — X))

A sketch of the graph of a typical L, (when s 1s even) is shown in Figure 3.5.
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Example 2

(a) Use the numbers (called nodes) xo = 2, x
Lagrange interpolating polynomial for f(x)

2.75, and x» = 4 to find the second
= 1/x.

(b) Use this polynomial to approximate f(3) = 1/3.

Solution

nested form they are

and

(a) We first determine the coefficient polynomials Lg(x), Li(x), and Lx(x). In

Ly(x) =

Li(x) =

Lr(x) =

(x —2.73)(x — 4)

(2 —2.502 —4)
(x —2)(x —4)

— E[I — 2.75)(x — 4),

16

275 2275 —4) ~ 15" T PE W

(x — 2)(x — 2.75)

(4 —2)(4—25)

15

— %[I — 2¥x — 2.75).




Also. f(xo) = F(2) = 1/2, f(x1) = F(2.75) = 4/11,and f(x2) = f(4) = 1/4. so

P =3 foLe(o)
k=0

1 1
— E[I — 2. 75)x — 4) — (x —2)x —4) + ﬁ(_‘{ — 2)(x — 2.75)

165
1 5 35 49

—X X .

22 88 —+-1

(b)) An approximation to f(3) = 1/3 (see Figure 3.6) is

3) = P(3) = o ]D5+49—29’”0329‘55
I3y = T 22 88 @ 44 88 T
Recall that in the opening section of this chapter (see Table 3.1) we found that no Taylor
polynomial expanded about xi; — 1 could be used to reasonably approximate f(x) — 1/x

atx = 3. [




Figure 3.6
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Errors of Newton’s Interpolating Polynomials/

» Structure of interpolating polynomials is similar to the Taylor series expansion in the
sense that finite divided differences are added sequentially to capture the higher order
derivatives.

» For an r777-order interpolating polynomial, an analogous relationship for the error is:

: (n+1) (5) & Is somewhere
containing the unknown
Rn = (X—XO)(X—Xl)”'(X—Xn) and he data
(n+1)!

» For non differentiable functions, if an additional point 7(x,, ) is available, an alternative
formula can be used that does not require prior knowledge of the function:

Ro= FIX 0 X X gheees Xo J(X =X ) (X=X )+ (X—=X)



Lagrange Interpolating Polynomials

» The Lagrange interpolating polynomial is simply a
reformulation of the Newton’s polynomial that avoids the
computation of divided differences:

0= 2L 00 (x)




ﬁ

OO =5 (%) +—— 02 T (%)
(X=X (X —=x5) (X=X XX — %5 )
f2 (X) B (Xo o Xl)(XO _Xz) f (XO) | (Xl — Xo )(X1 _Xz) ' (Xl)
(X_XO)(X_Xl) f(xz)

(Xz — Xo )(Xz _Xl) _
*As with Newton’s method, the Lagrange version has an estimated error of:

O

R,y = T X Xy ghe e %I [ (X= %)
1=0



Example 3

In Example 2 we found the second Lagrange polynomial for f(x) = 1/x on [2. 4] using the
nodes xp = 2. xy = 2.75. and x2 = 4. Determine the error form for this polynomial., and
the maximum error when the polynomial is used to approximate f(x) forx & [2. 4].

Solution Because f(x) — x~ ! we have
fiix) = —x"2% f"(x)=2x7, and [f"(x)= —6x",
As a consequence, the second Lagrange polynomial has the error form
Fre {’I‘} B .
s {fr (X)) (r—x ) —x2) = —(E@E) Hx—2)(x—2.75)(x—4), for £(x) in (2,4).
The maximum value of (£(x))~* on the interval is 2% = 1/16. We now need to determine
the maximum value on this interval of the absolute value of the polynomial
35 , 49
gix) =(x —2)x —2.73)(x —4) = P — x4 —x — 22,

4 2




Because

35 , 49 35 49 1
D |x—"x"4+ —x—-22)=3x"—-"x+— =—Cx=—TN(2x =T,
( 4 2 ) 2 2 1"‘ ) )

the critical points occur at

7 . 7 25 _ 7 7 9
X = 3 with g (5) = 108" and X = ) with g (E) =1¢

Hence. the maximum error is

Ex), _ 1 o 3
30 [((x —xp)(x —x ) )x —x2)| = 6.6 l_lﬁ‘ = 312




