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Numerical Analysis
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 Structure of interpolating polynomials is similar to the Taylor series expansion in the 

sense that finite divided differences are added sequentially to capture the higher order 

derivatives.

 For an nth-order interpolating polynomial, an analogous relationship for the error is:

 For non differentiable functions, if an additional point f(xn+1) is available, an alternative 

formula can be used that does not require prior knowledge of the function:
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Errors of Newton’s Interpolating Polynomials/
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Lagrange Interpolating Polynomials

 The Lagrange interpolating polynomial is simply a 

reformulation of the Newton’s polynomial that avoids the 

computation of divided differences:
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•As with Newton’s method, the Lagrange version has an estimated error of:
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