
In this section we turn to the nonhomogeneous system

x P t x g t (1)

where the n n matrix P t and n 1 vector g t are continuous for t . By
the same argument as in Section 3.6 (see also Problem 16 in this section) the general
solution of Eq. (1) can be expressed as

x c1x
1 t cnx

n t v t (2)

where c1x
1 t cnx

n t is the general solution of the homogeneous system
x P t x, and v t is a particular solution of the nonhomogeneous system (1). We
will briefly describe several methods for determining v t .

We begin with systems of the form

x Ax g t (3)

where A is an n n diagonalizable constant matrix. By diagonalizing the coefficient
matrix A, as indicated in Section 7.7, we can transform Eq. (3) into a system of
equations that is readily solvable.
Let T be the matrix whose columns are the eigenvectors 1 n of A, and

define a new dependent variable y by

x Ty (4)

Then substituting for x in Eq. (3), we obtain

Ty ATy g t

By multiplying by T 1 it follows that

y T 1AT y T 1g t Dy h t (5)

where h t T 1g t and where D is the diagonal matrix whose diagonal entries
are the eigenvalues r1 rn of A, arranged in the same order as the corresponding
eigenvectors 1 n that appear as columns of T. Equation (5) is a system of
n uncoupled equations for y1 t yn t ; as a consequence, the equations can be
solved separately. In scalar form Eq. (5) has the form

yj t rj yj t hj t j 1 n (6)

where hj t is a certain linear combination of g1 t gn t . Equation (6) is a first
order linear equation and can be solved by the methods of Section 2.1. In fact, we have

yj t erj t
t

t0

e rj sh j s ds cj e
rj t j 1 n (7)

where the cj are arbitrary constants. Finally, the solution x of Eq. (3) is obtained from
Eq. (4). When multiplied by the transformation matrix T, the second term on the right
side of Eq. (7) produces the general solution of the homogeneous equation x Ax,
while the first term on the right side of Eq. (7) yields a particular solution of the
nonhomogeneous system (3).



Find the general solution of the system

x 2 1
1 2

x 2e t

3t
Ax g t (8)

Proceeding as in Section 7.5, we find that the eigenvalues of the coefficient matrix
are r1 3 and r2 1, and the corresponding eigenvectors are

1 1
1

2 1
1

(9)

Thus the general solution of the homogeneous system is

x c1
1
1

e 3t c2
1
1

e t (10)

Before writing down the matrix T of eigenvectors we recall that eventually we must
findT 1. The coefficient matrixA is real and symmetric, so we can use the result stated
at the end of Section 7.3: T 1 is simply the adjoint or (since T is real) the transpose of
T, provided that the eigenvectors of A are normalized so that 1. Hence, upon
normalizing 1 and 2 , we have

T
1

2
1 1
1 1

T 1 1

2
1 1
1 1

(11)

Letting x Ty and substituting for x in Eq. (8), we obtain the following system of
equations for the new dependent variable y:

y Dy T 1g t 3 0
0 1

y
1

2
2e t 3t
2e t 3t

(12)

Thus

y1 3y1 2e t 3

2
t

(13)

y2 y2 2e t 3

2
t

Each of Eqs. (13) is a first order linear equation, and so can be solved by the methods
of Section 2.1. In this way we obtain

y1
2

2
e t 3

2

t

3

1

9
c1e

3t

(14)

y2 2te t 3

2
t 1 c2e

t

Finally, we write the solution in terms of the original variables:

x Ty
1

2

y1 y2
y1 y2

c1 2 e 3t [ c2 2 1
2 ]e

t t 4
3 te t

c1 2 e 3t [ c2 2 1
2 ]e

t 2t 5
3 te t



k1
1
1

e 3t k2
1
1

e t 1

2
1
1

e t 1
1

te t

1
2

t
1

3
4
5

(15)

where k1 c1 2 and k2 c2 2. The first two terms on the right side of Eq. (15)
form the general solution of the homogeneous system corresponding to Eq. (8). The
remaining terms are a particular solution of the nonhomogeneous system.

If the coefficient matrix A in Eq. (3) is not diagonalizable (due to repeated eigenval-
ues and a shortage of eigenvectors), it can nevertheless be reduced to a Jordan form J by
a suitable transformation matrix T involving both eigenvectors and generalized eigen-
vectors. In this case the differential equations for y1 yn are not totally uncoupled
since some rows of J have two nonzero elements, an eigenvalue in the diagonal position
and a 1 in the adjacent position to the right. However, the equations for y1 yn can
still be solved consecutively, starting with yn . Then the solution of the original system
(3) can be found by the relation x Ty.

A second way to find a particular solution of the non-
homogeneous system (1) is the method of undetermined coefficients. To make use of
this method, one assumes the form of the solution with some or all of the coefficients
unspecified, and then seeks to determine these coefficients so as to satisfy the differ-
ential equation. As a practical matter, this method is applicable only if the coefficient
matrix P is a constant matrix, and if the components of g are polynomial, exponential,
or sinusoidal functions, or sums or products of these. In these cases the correct form
of the solution can be predicted in a simple and systematic manner. The procedure for
choosing the form of the solution is substantially the same as that given in Section 3.6
for linear second order equations. The main difference is illustrated by the case of a
nonhomogeneous term of the form ue t , where is a simple root of the characteris-
tic equation. In this situation, rather than assuming a solution of the form ate t , it is
necessary to use ate t be t , where a and b are determined by substituting into the
differential equation.

Use the method of undetermined coefficients to find a particular solution of

x 2 1
1 2

x 2e t

3t
Ax g t (16)

This is the same system of equations as in Example 1. To use the method of unde-
termined coefficients, we write g t in the form

g t 2
0

e t 0
3

t (17)

Then we assume that

x v t ate t be t ct d (18)

where a, b, c, and d are vectors to be determined. Observe that r 1 is an eigenvalue
of the coefficient matrix, and therefore we must include both ate t and be t in the



assumed solution. By substituting Eq. (18) into Eq. (16) and collecting terms, we obtain
the following algebraic equations for a, b, c, and d:

Aa a

Ab a b 2
0 (19)

Ac 0
3

Ad c

From the first of Eqs. (19) we see that a is an eigenvector of A corresponding to the
eigenvalue r 1. Thus aT , where is any nonzero constant. Then we find
that the second of Eqs. (19) can be solved only if 1 and that in this case

b k 1
1

0
1

(20)

for any constant k. The simplest choice is k 0, from which bT 0 1 . Then
the third and fourth of Eqs. (19) yield cT 1 2 and dT 4

3
5
3 , respectively.

Finally, from Eq. (18) we obtain the particular solution

v t 1
1

te t 0
1

e t 1
2

t
1

3
4
5

(21)

The particular solution (21) is not identical to the one contained in Eq. (15) of Example
1 because the term in e t is different. However, if we choose k 1

2 in Eq. (20), then
bT 1

2
1
2 and the two particular solutions agree.

Now let us turn to more general problems in which the
coefficient matrix is not constant or not diagonalizable. Let

x P t x g t (22)

where P t and g t are continuous on t . Assume that a fundamental matrix
t for the corresponding homogeneous system

x P t x (23)

has been found. We use the method of variation of parameters to construct a particular
solution, and hence the general solution, of the nonhomogeneous system (22).
Since the general solution of the homogeneous system (23) is t c, it is natural to

proceed as in Section 3.7, and to seek a solution of the nonhomogeneous system (22)
by replacing the constant vector c by a vector function u t . Thus, we assume that

x t u t (24)

where u t is a vector to be found. Upon differentiating x as given by Eq. (24) and
requiring that Eq. (22) be satisfied, we obtain

t u t t u t P t t u t g t (25)

Since t is a fundamental matrix, t P t t ; hence Eq. (25) reduces to

t u t g t (26)



Recall that t is nonsingular on any interval where P is continuous. Hence 1 t
exists, and therefore

u t 1 t g t (27)

Thus for u t we can select any vector from the class of vectors that satisfy Eq. (27);
these vectors are determined only up to an arbitrary additive constant (vector); therefore
we denote u t by

u t 1 s g s ds c (28)

where the constant vector c is arbitrary. Finally, substituting for u t in Eq. (24) gives
the solution x of the system (22):

x t c t 1 s g s ds (29)

Since c is arbitrary, any initial condition at a point t t0 can be satisfied by an
appropriate choice of c. Thus, every solution of the system (22) is contained in the
expression given by Eq. (29); it is therefore the general solution of Eq. (22). Note that
the first term on the right side of Eq. (29) is the general solution of the corresponding
homogeneous system (23), and the second term is a particular solution of Eq. (22)
itself.
Now let us consider the initial value problem consisting of the differential equation

(22) and the initial condition

x t0 x0 (30)

We can write the solution of this problem most conveniently if we choose for the
particular solution in Eq. (29) the specific one that is equal to the zero vector when
t t0. This can be done by using t0 as the lower limit of integration in Eq. (29), so that
the general solution of the differential equation takes the form

x t c t
t

t0

1 s g s ds (31)

The initial condition (30) can also be satisfied provided that

c 1 t0 x
0 (32)

Therefore

x t 1 t0 x
0 t

t

t0

1 s g s ds (33)

is the solution of the given initial value problem. Again, while it is helpful to use 1

to write the solutions (29) and (33), it is usually better in particular cases to solve the
necessary equations by row reduction rather than to calculate 1 and substitute into
Eqs. (29) and (33).
The solution (33) takes a slightly simpler form if we use the fundamental matrix
t satisfying t0 I. In this case we have

x t x0 t
t

t0

1 s g s ds (34)



Equation (34) can be simplified further if the coefficient matrix P t is a constant matrix
(see Problem 17).

Use the method of variation of parameters to find the general solution of the system

x 2 1
1 2

x 2e t

3t
Ax g t (35)

This is the same system of equations as in Examples 1 and 2.
The general solution of the corresponding homogeneous system was given in

Eq. (10). Thus

t e 3t e t

e 3t e t (36)

is a fundamental matrix. Then the solution x of Eq. (35) is given by x t u t ,
where u t satisfies t u t g t , or

e 3t e t

e 3t e t
u1
u2

2e t

3t
(37)

Solving Eq. (37) by row reduction, we obtain

u1 e2t 3
2 te

3t

u2 1 3
2 te

t

Hence

u1 t 1
2e

2t 1
2 te

3t 1
6e

3t c1
u2 t t 3

2 te
t 3

2e
t c2

and

x t u t

c1
1
1

e 3t c2
1
1

e t 1
1

te t 1

2
1
1

e t

1
2

t
1

3
4
5

(38)

which is the same as the solution obtained previously.

Each of the methods for solving nonhomogeneous equations has some advantages
and disadvantages. The method of undetermined coefficients requires no integration,
but is limited in scope and may entail the solution of several sets of algebraic equations.
The method of diagonalization requires finding the inverse of the transformation matrix
and the solution of a set of uncoupled first order linear equations, followed by a matrix
multiplication. Its main advantage is that for Hermitian coefficient matrices the inverse
of the transformation matrix can be written down without calculation, a feature that is
more important for large systems. Variation of parameters is the most general method.
On the other hand, it involves the solution of a set of linear algebraic equations with
variable coefficients, followed by an integration and a matrix multiplication, so it may
also be the most complicated from a computational viewpoint. For many small systems



with constant coefficients, such as the one in the examples in this section, there may be
little reason to select one of thesemethods over another. Keep inmind, however, that the
method of diagonalization is slightly more complicated if the coefficient matrix is not
diagonalizable, but only reducible to a Jordan form, and the method of undetermined
coefficients is practical only for the kinds of nonhomogeneous terms mentioned earlier.
For initial value problems for linear systems with constant coefficients, the Laplace

transform is often an effective tool also. Since it is used in essentially the same way as
described in Chapter 6 for single scalar equations, we do not give any details here.

In each of Problems 1 through 12 find the general solution of the given system of equations.

1. x 2 1
3 2

x et

t
2. x 1 3

3 1
x

et

3 e t

3. x 2 5
1 2

x cos t
sin t

4. x 1 1
4 2

x e 2t

2et

5. x 4 2
8 4

x t 3

t 2 t 0

6. x 4 2
2 1

x t 1

2t 1 4
t 0
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1
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9. x
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5
4

x 2t
et

10. x 3 2
2 2

x 1
1

e t

11. x 2 5
1 2

x 0
cos t

0 t

12. x 2 5
1 2

x csc t
sec t 2

t

13. The electric circuit shown in Figure 7.9.1 is described by the systemof differential equations

dx

dt

1
2

1
8

2 1
2

x
1
2

0
I t (i)

where x1 is the current through the inductor, x2 is the voltage drop across the capacitor,
and I t is the current supplied by the external source.
(a) Determine a fundamental matrix t for the homogeneous system corresponding to
Eq. (i). Refer to Problem 25 of Section 7.6.

FIGURE 7.9.1 The circuit in Problem 13.


