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4.3 The Phase Plane for Linear Systems of Differential Equations

4.3.1 Introduction to the Phase Plane for Linear Systems
of Differential Equations

In this section, we continue to analyze only linear systems of differential equations,

d
i =ax + by, (la)
dt
d
d—f —cx +dy. (1b)

This section is devoted to explaining the important concept of the plane plane. But
in this section we only consider the phase plane for linear systems (la)—(1b). The

phase plane for nonlinear systems is discussed in Chapter 6.

Solutions x (), y(¢) of differential equations were previously each graphed as func-
tions of time. Here instead we introduce the x, y-plane. Each value of ¢ corresponds
to apoint x, y in the plane. A solution of the differential equation x (¢), y(¢) satisfying
a given initial condition now traces out a curve in the x, y-plane. This parameterized
curve (along with an indication of the direction the solution moves along the curve
as time 7 increases) is called a trajectory or orbit. (The term solution curve is also
sometimes used.) The set of trajectories (corresponding to all initial conditions) in the
x, y-plane, together with an indication of the solutions direction as time increases, is
the phase plane. Usually only a few representative solutions are drawn. (This sketch
is sometimes called a phase portrait.)

Example 4.3.1 Trajectory in the Phase Plane

We consider the linear system
dx

T (2a)
dy

@ _ 2b
o x (2b)

e SOLUTION. Although we can solve this system by matrix methods, in this
example, elimination is perhaps simpler. Substituting y = ‘f[—’t‘ into (2b) yields the
sccond-order differential equation with constant coefficients

2
ZT;C =—X. 3)
The characteristic equation obtained by substituting x = ¢’” is r> = —1, so that r = =i
and the general solution is
X =c1cost+cpsint, (4a)
y=—cysint+cycost. (4b)

We wish to consider the solution associated with one initial condition, and for sim-
plicity we choose x (0) = 1 and y(0) = 0. In this case c; = 1 and ¢, =0, so the solution
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Figure 4.3.1 Solution of initial value problem x () =cos¢, y(t) = — sint.
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Figure 4.3.2 Trajectory in the phase plane.

of this initial value problem is

X =cost (5a)
y=—sint. (5b)

In figure 4.3.1we graph (5a)—(5b) in the traditional way x = x(¢) and y = y(¢), giving
two elementary trigonometric functions. The phase plane (.x, y) results by just plotting
the set of points (x(t), y(¢)) for different values of ¢. Thus the figure does not show
t. The trajectory for this initial condition is the circle (graphed in figure 4.3.2) with
radius 1, since

yi=1 (6)
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By plotting points for different ¢ values, we see the trajectory moves clockwise. For
example, =0 correspondstox =1, y=0andt = m /2 correspondstox =0, y=—1.
The reason the solution moves clockwise in this example is that here the usual polar
angle 6 is 6 = —t, and thus the polar angle decreases in time. Arrows indicating how
the solution moves clockwise, as time ¢ increases is also included in figure 4.3.2. We
will soon give further discussion on the direction of the orbits in the phase plane. 4

PHASE PLANES ON COMPUTER SCREENS. It is quite common now for phase planes to
be readily determined and vividly displayed on your computer screen using software
such as Matlab, Scilab, Mathematica, or MAPLE. You will probably learn more about
the subject if you have such a system available to you, or at least have access to a
graphics program for phase planes for differential equations. These programs solve
the system of differential equations numerically subject to given initial conditions. It
is then easy for the program to take the numerical time-dependent solutions for x(#)
and y(¢) and use them directly to graph the phase plane (x, y). The time-dependent
solutions of the differential equation are the parametric description of the curve shown
on your screen which we call the phase plane.

NUMERICAL SOLUTIONS. Here we are not particularly interested in what numerical
method the program uses. That is a separate interesting specialized mathematical sub-
ject. Those interested in numerical methods for differential equations should consult
longer books on differential equations or specialized books on numerical methods for
ordinary differential equations.

DIRECTION FIELD. The phase plane can be graphically constructed directly from the
system of differential equations (1a)—(1b) without solving the system of differential

equation. The vector x = [)x] has the representation as a row vector x = (x, y) or

x =xi+ yj, so that in calculus it is shown that ‘Cl,—’[‘ is a tangent vector to the orbit

or trajectories. As with using the slope to help sketch the solutions for first-order
differential equations (see Section 1.4), a grid of points is chosen. At each (x, y)
point in the grid, the right hand side of the system of differential equations (1a)—(1b)
immediately determines the vector

dx
dar | _|ax+by
% T lex+dy|’

which is tangent to the solution curves in the phase plane in the direction that time
increases.

If software plots these vectors, the plot s called a vector field plot. However, often
some of the vectors are small, and others large, so that it can be hard to tell what is
happening to solutions in some regions. Accordingly, many programs have the ability
to plot the direction field for systems, including the linear systems we study in this
chapter. This is easy to implement on computers or even graphing calculators. It is
similar to a velocity vector, and everywhere (at each point in the grid) it has magnitude
and direction. Usually the program draws a vector of equal small size so as not to
interfere with neighboring vectors, and we call this the direction field. By having all
vectors the same size it is easier to visualize the solutions. The phase plane may be
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Figure 4.3.3 Direction field for (2a)-(2b).

approximated by forming curves tangent to the vectors of the direction field. We will
do some examples.

EXAMPLE OF DIRECTION FIELD. Consider the previous example of a linear sys-
tem (2a)—(2b). The direction field for this linear system is shown in figure 4.3.3 from
some computer output. Since this is the first example for which we do a direction
field, we want to explain very carcfully. Let us take, for example, x =1 and y =1.
From the differential equation, at that point the direction field should be a vector in
the direction [_11 ] Look at figure 4.3.3 at the point x =1, y = 1, and note the vector
there is in that direction. For example, for the point x = —1 and y = —1, from the
differential equation the direction field should be a vector in the direction [‘11 ] We
also compare the phase plane of the exact solution (circle) with the direction field
and we see that the direction field suggests motion similar to the circle. The direction

field is tangential to the circular orbits in the phase plane.

EQUILIBRIUM SOLUTION. The origin x(#) =0, y(#) = 0is a constant or equilibrium
solution (does not depend on ¢) of any linear (homogeneous) system (1a)—(1b). Solu-
tions of the linear system whose initial conditions are at the origin stay at the origin.
The phase planc representation for the equilibrium solution is just a point that does
not move, the equilibrium at the origin. For solutions of the system of differential
equations that are not equilibria, the solutions will move in time. Then the trajectory

or orbits in the phase plane will be curves.

STABLE OR UNSTABLE EQUILIBRIUM. If all solutions of the linear system stay near
the equilibrium for all initial conditions near the equilibrium, then we say the equi-
librium is stable. If there is at least one initial condition for which the solution goes
away from the equilibrium, then we say the equilibrium is unstable. In this section,
we will determine conditions for which the equilibrium (the origin) for the linear

system is stable or unstable.
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Figure 4.3.4 Trajectory in phase plane sketched from direction field.

OVERVIEW. In this section our interest is in explaining or directly constructing the
phase planes using mathematical ideas. We will show how to obtain these trajecto-
ries in the phase plane using explicit solutions of the system of linear differential
equations by using the matrix methods for solutions to linear systems of differential
equations we have just studied in Section 4.2. Eigenvalues and eigenvectors will be
very important. We will learn how to solve the phase plane for lincar systems by doing
a large number of examples. We begin with some very elementary examples where
we do not need matrix methods. Then, we proceed to systematically investigate most
cases of linear systems of differential equations including those involving real and
complex eigenvalues.
In the problems of this section, ‘ZZ—’{‘ does not depend explicitly on ¢. Thus if two
trajectories were to intersect, then at that point there would be two solutions which
satisfy the same initial condition which would violate the uniqueness of solutions.

Thus

Trajectories cannot intersect other trajectories or cross themselves.

This fact will be used repeatedly in what follows.

Example 4.3.2
For the following linear system, (a) identify its equilibrium; (b) sketch the direction
field using software; (c) explain the direction field using the system of differential
equations; and (d) sketch the phase plane using solutions of the system of differential

equations;
dx
— = —3x, 7
T x (7a)
1y

dt
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Figure 4.3.5 Direction field for (7a)—(7b).

o SOLUTION. (a) Here x =y =0 solves the system of differential equations, so
(0, 0) is an equilibrium point. It is the only solution of —3x =0, —y =0, so it is the
only equilibrium solution.

(b) Figure 4.3.5 shows the direction field (based on some readily available com-
puter program) for the time-dependent system (7a)—(7b). (c) Since i]T); = —3x, in the
right half-plane (where x > 0) trajectorics satisfy ‘[Jl—f <0, so x(¢) decreases as time
increases and the solution flows to the left. Similarly, in the left half-plane (where
x < 0) trajectories flow to the right. Since ‘fl—[ = —Y, trajectories in the upper half-

plane (where y > 0) have ‘Zl—: <0, so y(t) decreases as time increases and the solution
flows downward. In the lower half-plane (y < 0) the solution moves upward at time
increases. From the figure we see that all solutions “flow into” the equilibrium (0, 0).
Such an equilibrium is called asymptotically stable.

(d) We also can explain the trajectories in the phase plane using the explicit solution
of the system. The system (7a)—(7b) constitutes an uncoupled pair of linear differential
equations whose solutions are

xn=cre™, yn)=cre . 8)
If ¢ =0, the solution in the phase plane is simple, namely, the line y =0. Since
x(t) =ce™!, the trajectories along y =0 approach the origin. More precisely, the
trajectories correspond to two rays approaching the origin (one with positive x and
one with negative x) and the equilibrium. Similarly, the solution corresponding to
c1 =0 corresponds to two rays approaching the origin (in opposite directions) along
x =0. These are the four straight rays sketched in figure 4.3.6. If both ¢; #0 and
¢z # 0, then the trajectory is more complicated. Certainly, all solutions approach the
origin as t — +00. As t — 400, ¢73" — 0 much faster than ¢~ , so that these other
trajectories must approach and be tangent to the line x =0 as t — 400, as shown in
figure 4.3.6 This kind of equilibrium is an example of a stable node. We will discuss
other examples of this later in this section. ¢
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Figure 4.3.6 Phase plane for (7a)—(7b) sketched with direction field.

Example 4.3.3

Sketch the direction field and the phase plane for the system

d
d—);=3x, (9a)
dy
a_, 9b
T (9b)

and describe the behavior of the solutions near the equilibrium (0, 0).

® SOLUTION. It turns out that the direction field and phase plane for this example is
almost identical to the previous one. The direction field and phase plane are the same
but the directions of the arrows in time are reversed. To show that, we let t = —7.

: . d dx d d : :
Slnce., for example, by the chain rule %+ = 97 9% = —%¢. The system of differential
equations becomes

dx_

E——?))C, (103)
dy

— = —y. 10b
e y (10b)

The trajectories are the same, but their directions are reversed in time. Now all solu-
tions flow away from the equilibrium (0, 0); the equilibrium is unstable. This kind of
equilibrium is called an unstable node. All solutions (except the equilibrium itself)
go away from the equilibrium (origin) as time increases, and we note that the solutions
go to infinity as t — —+o0. It is most important to note that all solutions approach the
origin backward in time (as t — —o00). A more subtle result is to note that backward
in time the solution approaches the origin tangent to x = 0. ¢



294 Chapter 4

b Pt ' N
L ot ' N
L ottt \ N
L~ 7t AN ~
L A \ ~
|~ s 7 7t \ ~J
P Ay avd AN
Yo >
~~N\ |/
™~ N A / “I
™~ N\ v / ~
N~ IR A 1
N Vo | 7
N v | /
N Vo ! /
—2 0 2

Figure 4.3.7 Phase plane for (11a)—(11b) sketched with direction field.

Example 4.3.4

Sketch the direction field using software and sketch the phase plane for the linear
system of differential equations using solutions of the system of differential equations

d
—x:—x, (11a)
dt
dy
— =2y, 11b
a5 =2 (11b)

® SOLUTION. The equilibrium is again the origin x =y =0 or (0, 0) The direc-
tion field is sketched in figure 4.3.7. The solution to the system is x(t) =cje™’
and y(t) =cye? . If ¢ =0, the solution in the phase plane is again the line y =0.
Since x (1) = cje™’, the trajectorics along y = 0 approach the origin. More precisely,
the trajectories correspond to two rays approaching the origin, exactly the same as
Example 4.3.2. The solution corresponding to ¢; = 0 corresponds to the vertical line
x =0, but arrows are introduced along x =0 away (outgoing) from the origin, since
y is exponentially increasing and going toward = infinity. This solution x =0 with
y(t) = c2e” approaches the origin backward in time (as r — —00). There are four
straight line rays sketched in figure 4.3.7, two going toward the origin but two away
from the origin. If both ¢1 # 0 and ¢y #0, then the trajectory is more complicated.
These solutions approach infinity as t — 400 in the direction x = 0. These solutions
also approach infinity backward in time as t — —oo0, but along y =0, as shown in
figure 4.3.7. This kind of equilibrium is an example of a saddle point. We will discuss
other examples of this later in this section. ¢

An equilibrium is defined to be stable if all initial conditions near the equilib-
rium stay near the equilibrium. (A more technical definition is needed for nonlinear
systems.) In this example, initial conditions along y =0 approach the equilibrium
in a stable-like manner. However, the definition requires this to occur for all initial
conditions. We can see from the figure that most initial conditions go away from the
equilibrium, so we say that all saddle points are unstable equilibrium.
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The last three examples were intended as motivation for a more general discussion
of phase plane analysis for linear systems of differential equations

d—f:ax—l—by, (12a)
dy

—= dy. 12b
o cx+dy (12b)

4.3.2 Phase Plane for Linear Systems of Differential Equations

For the rest of this section, we continue to study linear (homogeneous) systems of
differential equations

dx

— = by, 13
o ax + by (13a)
dy

— = dy. 13b
e cx +dy (13b)

We note that x =y =0 corresponding to the origin (0, 0) is always an equilibrium
point.

An understanding of the phase plane of linear systems comes from their explicit
solution. In Section 4.2 we showed how to use eigenvalues and eigenvectors to solve

linear system. We substitute
x(@)| _ a|u
ol= ) .

(a—Mu+bv=0, (15a)
cu+(d—r1v=0, (15b)

and obtain

or what we will use from now on,

a—X b u
|: @ d—)»i| |:vi| =0 (16)

The pair of equations has a nonzero solution for u, v if and only if the determinant of
the coefficient matrix is zero, that is,

det[azX di)»i|=(a_)‘)(d—)»)—bc=)\2—(a+d))‘+ad_bc:0' a7

This is called the characteristic equation for the linear system of differential equa-
tions (13a)—(13b). This is also the condition for A to be an eigenvalue of the
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coefficient matrix A =[ 4 % ]. The eigenvector [ % | corresponding to the eigenvalue A
satisfies (15a)—(15b) or (16).
There are a number of questions we wish to answer:

1. Is the equilibrium x = y =0 stable or unstable?

2. What happens to the solution as time increases, and in particular what
happens for long time (f — +00)?

3. What do trajectories of the solutions look like in the phase plane?

It turns out that the behavior of the solutions of linear systems of differential equa-
tions is linked to the nature of the eigenvalues A and A of the coefficient matrix.
Different behavior occurs if the eigenvalues are both positive, both negative, of oppo-
site signs, or are complex (with positive, negative, or zero real part). We consider
most cases in detail by first considering a special example and then indicating what
happens in general. For your convenience, at the end of this section we summarize
these results in Theorem 1.

4.3.3 Real Eigenvalues

Case 1: )1, Ay Real, Distinct, and Positive (Unstable Node)
Example 4.3.5

We first do an example similar to Example 4.3.1, which has both eigenvalues real,
distinct, and positive:

d
d—j:x, (18a)
dy

9 gy 18b
PR (18b)

e SOLUTION. The eigenvalues (roots of the characteristic equation) are 1 and 4, and
the solution to the system is

x()=cie', y(t) =cre™. (19)

This can be rewritten as a vector, which helps in understanding the trajectories in the

phase plane:
Cx] e 1], 0] 4
X(I)_[y]_[cze4’}_cl Me +62[1 < 20

For example, (see figure 4.3.8), if ¢ =0, the solution in the phase plane is c| [ (1) ]e’.
This solution is in the direction [ } | which corresponds to the x-axis (y =0), cor-
responding to two rays (depending on the sign of ¢;) which go to infinity as time
increases (and approach the origin as t — —o0). The other straight line trajectory
going to infinity as time increases corresponds to the solution cz[ (1) ]64’ and is in the
vertical direction. The other solutions shown in figure 4.3.8 go away from the origin
and go to infinity as time increases. We say the equilibrium (0, 0) is an unstable
node. These trajectories also go to the origin as + — —oo in the direction tangent to
y=0. ¢
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Figure 4.3.8 Phase plane for (18a)—(18b), an unstable node.

WE NOW DISCUSS CASE I IN GENERAL WITH REAL DISTINCT POSITIVE EIGEN-
VALUES A1 >0 AND A >0 (UNSTABLE NODE). Suppose V| is an eigenvector
corresponding to the eigenvalue A, and v, is an eigenvector corresponding to the
eigenvalue Ay, as shown in Section 4.2. That means there are two elementary solutions
of the system, vie*! and voe*?!. From this we obtain the general solution,

x(t) = |:)yc:| =civiet + covpet?, (21)

If ¢ =0, the solution is x(t) = [)V‘] =cyvieMt, with A1 > 0. In the phase plane this
solution is in the direction of the eigenvector vy, since the solution is time-dependent
multiples of the eigenvector. In the phase plane, the trajectory of this solution is
a straight line in the direction of the eigenvector vy, going away from the origin
(since A1 > 0) toward infinity. These correspond to the two outward going rays in the
direction of the eigenvector vi shown in figure 4.3.9.

Similarly, if ¢; = 0, the solution is x(#) = H ] = cpvoe*?! | with Ay > 0. In the phase
plane, this solution also corresponds to two outward going straight lines (since A, > 0)
trajectories in the direction of the other eigenvector vy, as seen in figure 4.3.9. The
other trajectories in the phase plane move away in time from the origin and go to
infinity. Backward in time, solutions approach the origin. In general, when the roots
are distinct, real, and positive, the origin is an unstable node whose phase plane
resembles figure 4.3.9. It can be shown (subtle) that backward in time the solution
approaches the eigenvector direction of the smallest positive eigenvalue (since as
t — —oo the exponential e’ corresponding to the largest eigenvalue goes to zero
fastest). Computer-generated phase planes for linear systems are often incomplete,
without the straight line trajectories corresponding to the eigenvector directions.

Case 2: )1, Ay Real, Distinct, and Negative (Stable Node)

We again start with an example.
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Figure 4.3.9 Phase plane for unstable node, assuming A > A1 > 0.

Example 4.3.6

We do an example similar to Example 4.2.1 with both eigenvalues real, distinct, and

negative:
dx (222)
— =X, a
dt
dy
=L — 4y, 22b
o y (22b)

® SOLUTION. The cigenvalues (roots of the characteristic equation) arec —4 and —1,
and the general solution to the system is

x()=cre™,  y(t)=cre . (23)

We can rewrite this as a vector:

—t
DR S

A phase planc diagram for this system is given in figure 4.3.10. If ¢, = 0, the solution
in the phase plane is ¢ [ (1) ]e“ . This solution is two straight line rays going toward the
origin along the x-axis (y = 0). If ¢; =0, the solution in the phase plane is two vertical
rays moving toward the origin. These four rays are marked in blue in figure 4.3.10. In
this example, the trajectories are moving toward the origin. For this reason, the origin
is called an asymptotically stable equilibrium. Most trajectories approach the origin
along curves that are tangent to the x-axis (y =0). The equilibrium at the origin is a
stable node. ¢
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Figure 4.3.10 Phase plane for (22a)—(22b), a stable node.

Example 4.3.7 Case 2. L1, ho Real, Distinct, and Negative (Stable Node)

Classity the equilibrium at the origin and sketch a phase plane for the linear system

L (25a)
—_— = —=2Xx — s a
di Y

dy

D2y, 25b
o x—2y (25b)

@ SOLUTION. We substitute

X(@) | a|u

Sol= ) 26)
—2—A —1 u
[ 1 —2—1} M:O' @7

The eigenvalues satisfy the determinant condition

and obtain

M H4r+3=A+3)(A+1)=0. (28)

The origin is a stable node since the eigenvalues (roots) are —3, —1. To sketch
the trajectories in the phase plane, we determine the solution using eigenvalues
and eigenvectors. The eigenvector corresponding to A = —3 satisfies u — v =0. We
choose # =1, so that v=1, and the eigenvector corresponding to A =—3 is H]
In this way, we obtain the elementary solution x(t) =[§ | =c|[ } Je™. The trajec-
tories in the phase plane are two straight line rays (y =x) approaching the origin
in the direction “], as shown in figure 4.3.11. The eigenvector corresponding to
A= —1 satisfies —u — v =0. We choose u =1 and v=—1, so that the eigenvector
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Figure 4.3.11 Phase plane for (25a)-(25b), a stable node.

correspondingtol = —11is [ _11 ] The elementary solution corresponding to the eigen-
value A =—11is [} | =ca[ 1, Je, which is the direction y = —x of the two straight
line rays approaching the origin in figure 4.3.11. From this we obtain the general

solution:
X I 3 1 —t
[yj|_c1 |:1:|e +c2 |:_1]e . 29)

The solutions approach the origin as time increases. More specifically, the non-straight
line solutions approach the origin tangent to y = —x (same as the vector [ _11 ]) since
e~ is much smaller than e~ as t — +00. ¢

WHEN THE ROOTS (EIGENVALUES) ARE DISTINCT, REAL, AND NEGATIVE, CASE 2
THE ORIGIN IS A STABLE NODE. The phase plane near the origin resembles that in
figure 4.3.11). Cases 1 and 2 are quite similar. They differ mainly in that when the
roots (eigenvalues) are both positive, the trajectories move away from the origin (the
origin is unstable), while when the roots are both negative, the trajectories approach
the origin (the origin is stable). The general solution is again given by (21).

Case 3: )1, Ay Real, Opposite Signs (Saddle Point)

Example 4.3.8
A simple example of Case 3 with cigenvalues with real opposite signs is the system
dx
= =3z, 30
77 =% (30a)
d
. (30b)

dr
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Figure 4.3.12 Phase plane for (30a)—(30b), a saddle point.

® SOLUTION. The eigenvalues (roots of characteristic equation) are 3 and —1, and
the general solution to the system is

x()=cie¥,  y(t)=cre™". (31)

‘We can rewrite this as a vector:

3t
x(t) = m - [g:_t] = H e oo [(1)] e, (32)

The trajectories in the phase plane for this system are given in figure 4.3.12. If ¢; =0,
the solution in the phase plane is ¢ [ (1) ]e’ . This solution is two straight line rays going
away from the origin along the x-axis y =0. If ¢; =0, the solution in the phase plane
is two vertical rays moving toward the origin inward along the y-axis (x =0). These
four rays are marked in figure 4.3.12. If ¢1 #0 and ¢y #0, then as time increases
the solution must go away from the origin. Specifically, as t — +o00, y(t) — 0 but
[x(#)] = oo. As time goes backward, these solutions also go away from the origin and
go to infinity. Specifically, as t — —o0, x () — 0 but | y(¢)| — oco. Trajectories come
in along the positive and negative y-axis and go out along the positive and negative
x-axis. The origin is unstable, since there are trajectories that start near the origin
but eventually move away. (Note, there are two trajectories on the y-axis which do
approach the origin, but they are the only ones.) The phase plane attained with the
help of the direction field is shown in figure 4.3.12. The origin is said to be a saddle
point. It is called a saddle point, because a property of a saddle of a horse is that in one
direction the saddle goes away from the seat and in the other direction it goes toward
the seat. The phase plane also looks like the topographic map for a pass through a
mountain. ¢
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Figure 4.3.13 Phase plane for a saddle point.

CASE 3: WHEN EIGENVALUES (ROOTS) ARE REAL AND OF OPPOSITE SIGNS, THE
ORIGIN IS AN UNSTABLE SADDLE POINT. The general solution is again given by
(21). Saddle points are always unstable. In general, the trajectories come in alongside
one eigenvector (corresponding to the negative eigenvalue) and go out alongside the
other eigenvector (corresponding to the positive eigenvalue). This is illustrated in
figures 4.3.13. The next example helps our understanding of the phase plane for a
saddle point.

Example 4.3.9 Case 3. A1, Ly Real, Opposite Signs (phase plane of a saddle point)

Classity the equilibrium at the origin and sketch a phase diagram for the linear system
d
d—’; — _7x+6y, (33a)
dy
— =06x+2y. 33b
o = ox 2y (33b)
@ SOLUTION. For systems we substitute:

Lol=[: o

and obtain

—T7—A 6 u
[ 6 2-)J M =0 (35)
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Figure 4.3.14 Phase plane for (33a)—(33b), which is a saddle point

The cigenvalues satisfy the determinant condition
A2 +51=50=(1+10)(x —5)=0. (36)

The origin is an (unstable) saddle point, since the eigenvalues (roots) have oppo-
site signs 5, —10. To sketch the trajectories in the phase plane, we determine
the solution using eigenvalues and eigenvectors. The eigenvector corresponding to
A =15 satisfies —12u 4+ 6v =0. We choose u =1, so that v=2, and the eigenvec-
tor corresponding to A =5 is [1]. In this way, we obtain the elementary solution
x(t) =[V]=ci[}]e>. The trajectories in the phase plane are two straight line rays
(y =2x) going away from the origin toward infinity, in the direction [%], as shown in
figure 4.3.14. The eigenvector corresponding to A=— 10 satisfies satisfies 3u + 6v =0.
We choose v=1 and u = —2, so that the eigenvector corresponding to A =—10 is
[_12] The elementary solution corresponding to the eigenvalue A = —10 is [H =
cz[ _12 ]e_m’ . which is the direction y = —x /2 of the two straight line rays approach-
ing the origin in Figure 4.3.14. Saddle points for linear systems are characterized by
two opposite rays approaching the equilibrium but two opposite side rays going away
from the equilibrium. From these solutions, we obtain the general solution:

m —c B] O+ e [_12] e 10, (37)

The non-straight line trajectories have the following properties. These trajectories
all go away from the origin as time increases. Specifically, the non-straight line
solutions approach infinity along the direction of the ray (cigenvector) associated
with the positive eigenvalue, as shown in figure 4.3.14. Backward in time, these
solutions approach infinity along the direction of the ray (eigenvector) associated
with the negative cigenvalue. ¢
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Figure 4.3.15 Case 5. Phase plane with one zero eigenvalue.

Case 4: Equal Eigenvalues (repeated roots) A1 = A,

We don’t think this case is as important as the others, so we omit phase portraits of the
two possibilities (one independent eigenvector and two independent eigenvectors).

Case 5: One Eigenvalue Zero (). =0)

There are two cases, depending on whether A2 <0 or Ay > 0. We just consider one
example. Suppose A =0 with eigenvector [ } ] and 1, = —10 with eigenvector [ 1, ].
Then the general solution would be

ool e

If ¢; =0, solutions along the eigenvector [_12] move to the origin as time increases.

If ¢ =0, solutions along the eigenvector [%] do not move in time. Other solutions
approach the line ¢ [ } | parallel to the direction | !, | as shown in figure 4.3.15. If the
negative eigenvalue were positive, trajectories would move in the opposite direction
away from the line ¢1[ 1 ].

4.3.4 Complex Eigenvalues

Cases 6 and 7: Complex Eigenvalues (nonzero real part) . = a £ i 8: Spirals

We now consider the case of complex roots A =« +iff, where o # 0 and 8 # 0. (Pure
imaginary roots, A = %if, are discussed in Case 8.) For complex roots, because of
Euler’s formula, the solutions involve e® cos(Bt) and e®’ sin(Bt). Itis clear that when
a > 0, the trajectories will travel away from the origin. Hence, the origin is unstable.
But when o < 0, the trajectories approach the origin and the origin is asymptotically
stable. The result in the phase plane is a spiral centered at the origin, and the proof in
some important special cases is given below. Case 6: If « > 0, then the equilibrium
is an unstable spiral. Case 7: If o <0, then the equilibrium is a stable spiral. The
solutions may spiral either clockwise or counterclockwise but that is not usually an
important consideration. Figure 4.3.16 shows all four possibilities. The figure shows
only one spiral in each case corresponding to one initial condition. To account for all
initial conditions, one should visualize an infinite number of spirals.
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Figure 4.3.16 (a) Unstable spiral (counterclockwise), (b) unstable spiral (clockwise),
(c) stable spiral (counterclockwise), (d) stable spiral (clockwise).

Example 4.3.10 Phase Plane of a Spiral

Determine the phase plane for

dx
=2 ,, 39
ar x—+y (39a)
dy
— =—x+2y. 39b
= X +2y (39b)
@ SOLUTION. The eigenvalues satisty
2—2 I | . _
det|:_1 2_);|_)» —4r+5=0, (40)

so that the eigenvalues (roots) are complex, A =2=+i. Since « =2 > 0, we have an
unstable spiral. To determine whether it is clockwise or counterclockwise, we just
take one simple nonzero point on the x or y axis. For example, say x =1, y =0, in
which case the tangent vector is [‘fl—f, %] =[2, —1], which points down and to the

right from (1, 0). Thus, the unstable spiral is clockwise as in figure 4.3.16b. ¢
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SOME VERY IMPORTANT EXAMPLES OF COMPLEX EIGENVALUES: CASES 6 AND 7.
These examples simplify using polar coordinates. But this does not always work. To
better describe the behavior of trajectories, we analyze the specific system

d
d—:zax—ﬂy, (41a)
D _ gy (41b)
— =px+ay.
dr Y
The eigenvalues satisfy
a—r =B |_. . .2 2_
det[ B a- )J =(a—21)"+(B)" =0, (42)

so that the eigenvalues (roots) are complex, A =« £ if.
For this example (but not necessarily other examples), the differential equation

simplifies using the polar coordinates, 7> = x> 4 y? and tan = )‘X We obtain
d d d
ro = £y = — By +y(r ) =al +yh) =ark (43)
dividing by 2 and using the differential equation. We have
dr . . ot
7 =ar, with the general solution r(¢) =r(0)e™. 44)
We next obtain the differential equation for the polar angle,
d
2,40 _XG =G x(Bx+ay) —yx—By) _ BG4+
sec”f— = = = . 45)
dt x2 x2 x2
Since sec? 6 = wb#zg = ;—25, we obtain

do
I = B, with the general solution obtained by integration, 6(¢) = ft + 6(0). (46)

Again, we see that if & > 0, the solution moves away from the origin, since r — 400
as t + 0o. But, because 6 is a linear function of ¢, the trajectories spiral around the
origin. Similarly, when o < 0, the solutions spiral in toward the origin. We therefore
refer to the origin as a spiral point. It is a stable spiral if @ <0, and an unstable
spiral if &« > 0. We can determine the direction of rotation of the spiral from (46). If
B >0, then 6 (polar angle) increases in time, and the spiral is counterclockwise (see
figure 4.3.16a orc). If B <0, then 6 decreases in time, and the spiral is clockwise (see
figure 4.3.16b or d). The direction of the spiral can also be determined in a simpler way
directly from the original system. For example, sctting y =0 in (41b), we find that

dy _ Bx. Now, if B > 0, then as the trajectory crosses the positive x-axis, y =0, we

dt
have % > 0, and consequently, the trajectory is spiraling counterclockwise. Similarly,
B < 0 the trajectory spirals clockwise. These spirals are logarithmic spirals because

Inr(t)=Inr0)+at=Inr0)+ %(6([) —6(0)).
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In the general case, the spirals may be distorted, but the stability criteria persists;
when the roots A =« £ i are complex numbers, the origin is a spiral point that is
unstable when o > 0 (see figure 4.3.16 a or b) and asymptotically stable when o <0
(see figure 4.3.16 ¢ or d).

Example 4.3.11 Case 6. Complex Eigenvalues (roots) . = «a & i: Unstable Spirals.

Classify the equilibrium at the origin and sketch the phase plane for the system

d
d—):=2x+y, (47a)
dy
— =—x+2y. 47b
o= Xty (47b)

® SOLUTION. The eigenvalues (characteristic equation) for this system is

2-x 1] 2,4
det[_l 2_)\}_(2—)\)+1_0,

which has complex eigenvalues (roots), A =2 +i. Thus, the origin is an unstable
spiral, since @ =2 > 0. Setting y =0, x = 1 in (47b), we get the tangent vector

1
al 2
dy || —=1]"
dt

which points down and to the right from (1, 0). Thus the unstable spiral is clockwise,
and we have precisely the case of figure 4.3.16 b. ¢

Case 8: Purely Imaginary Eigenvalues (roots) » = £if: Centers
Example 4.3.12 Undamped Spring-Mass System

Sketch the trajectories in the phase plane for the first-order system corresponding to
the unforced undamped spring mass system in Section 2.5:

d’x

o SOLUTION. We will solve this oscillation of a spring mass system in a number of
different ways.

SOLUTION USING SECOND-ORDER DIFFERENTIAL EQUATION METHODS. We can
determine the trajectories in the phase plane by solving the second-order linear dif-
ferential equation with constant coefficients associated with the spring-mass system

(48). The amplitude and phase form of the general solution are particularly helpful
here:

x(t) = Asin(ot + ¢), (49)
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Figure 4.3.17 Phase plane for spring-mass system which is a center (ellipse).

where the natural frequency satisfies v =,/ r% In this case, by taking the derivative,

the velocity y = ‘fi—f satisfies

d
y(1) = d—f — Awcos(wt + ). (50)
Time can be eliminated from (49) and (50), giving directly the equation for the
trajectories in the phase plane:

2
x2+ y_2 = A%sin® +A% cos? = A2, (&29)
w

The phase plane consists of a family of ellipses shown in figure 4.3.17. Trajectories
move clockwise since, for example, at x =0, y =1 from (50) we see that ‘% =1so
that x is increasing in time there. The solutions orbit periodically (cyclically) through
the same points, with the same velocitiecs. We call the equilibrium (0, 0) a center.

SOLUTION USING DIRECTION FIELD. By introducing the velocity y= ‘% this
equation (48) can be converted to a first-order system:

dx_

= —y, 52
a5 = (52a)
dy k

— =——x. 52b
dt mx (52b)

The equilibrium is the origin x =y =0. The direction field for % =1 corresponds

to our earlier problem, (2a), (2b). With v = \/% =1 the ellipses become circles as
shown in figures 4.3.3 and 4.3.4. In that case the trajectories appear to be either circles
or spirals which encircle the origin clockwise. They can’t spiral because the exact

time-dependent solutions are periodic. They are ellipses here because of (51).
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SOLUTION USING SYSTEM OF FIRST-ORDER DIFFERENTIAL EQUATIONS. For the
spring-mass system, (52a)—(52b). For systems, we substitute:

X i |u

0= ) 3
—A 1 u
I | e

The eigenvalues satisfy the determinant condition

and obtain

k
M=o, (55)
nm

-7 » and by Euler’s formula the

The eigenvalues (roots) are purely imaginary A = =i \/Z
solution must involve cos \/% t and sin \/g t, which we already knew. ¢

Example 4.3.13 Case 8. Purely Imaginary Eigenvalues (Roots) . = +if.: Centers

Another example we study is the special system
dx

YT —By, (56a)
Q =— (56b)
dt px,

which is just system (41a)—(41b) with « = 0.

® SOLUTION. Let us first determine the eigenvalues before we rely on previously
obtained results. To find the eigenvalues, we substitute

ol T)
7 -

The eigenvalues satisfy the determinant condition

A+ Br=0. (59)

and obtain

The eigenvalues (roots) are purely imaginary A = £if, and then, by Euler’s formula,
the solution involves cos Bt and sin B¢. To analyze solutions in the phase plane, we
use previous results for polar coordinates and substitute &« =0 into case 6 and 7. In
this case from (44) and (46), we obtain

dr B
dr
Hence r(t) =r(0) and 6(¢) = Bt + 6(0). Since r is constant (but arbitrary), the trajec-

tories are concentric circles about the origin. The circular orbits are counterclockwise
if B> 0 (see figure 4.3.18a) and clockwise B <O (see figure 4.3.18b). Thus, the

do
0, — =4 (60)
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Figure 4.3.18 (a) Center: counterclockwise circles (8 > 0),
(b) center: clockwise circles (f < 0)
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Figure 4.3.19 (a) Center: Counterclockwise skewed ellipses,
(b) center: clockwise skewed ellipses.

motion is a periodic rotation around a circle centered at the origin. Appropriately, the
origin is called a center and is a stable equilibrium.

IN GENERAL, WHEN THE EIGENVALUES ARE PURELY IMAGINARY, THE ORIGIN IS
A STABLE CENTER. The trajectories are “skewed ellipses” centered at the origin with
axes of the ellipse not necessarily x =0 and y =0 as in our examples. Motion is
periodic. The equilibrium is stable since nearby solutions do not move very far away.
However, since the solutions do not approach the equilibrium, the equilibrium is not
asymptotically stable. Typical phase diagrams are shown in Figure 4.3.19.

4.3.5 General Theorems

THEOREM4.3.1  Theorem on Phase Portraits and Stability of Linear Systems. We
now summarize the phase plane behavior of a linear system of differential equations
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and the stability of the equilibrium at the origin:

X
— = by, 61
7 ax +by (61a)
dy
= dy, 61b
=% +dy (61b)
in terms of the coefficient matrix
a b
A= [C d} | (62)
The eigenvalues of the coefficient matrix satisfy the determinant condition, which is
det[a;)L dﬁk]=12—(a+d))»+(ad—bc)=0. (63)

Case 1: Two positive eigenvalues: unstable node (see figure 4.3.9)

Case 2: Two negative eigenvalues: stable node (see figure 4.3.11)

Case 3: One positive and one negative eigenvalue: unstable saddle point (see
figure 4.3.13)

Case 4: Equal eigenvalues (repeated roots)

Case 5: One cigenvalue zero: stable if A» <0 (see figure 4.3.15) and unstable if
A >0

Case 6: Complex eigenvalues (positive real part): unstable spiral (see figure 4.3.16
aand b)

Case 7: Complex eigenvalues (negative real part): stable spiral (see figure 4.3.16
cand d)

Case 8: Complex eigenvalues (zero real part): stable center (see figure 4.3.19)

CLASSIFICATION OF STABILITY OF LINEAR SYSTEMS. Here we will classify the
stability of the zero solution of linear systems in terms of the trace and determinant
of the matrix. These results have nice extensions when we include the phase plane.
The eigenvalues of the matrix solve the following quadratic equation (105) in term of
the trace and determinant of the matrix:

A2 —tr AX + detA =0. (64)

Using the quadratic formula, we have

. tr A+ ./(tr A)2 —4detA
= > .

(65)

If4detA > (tr A)?, then the eigenvalues are complex (the phase plane will be spirals),
stable (spirals) if tr A < 0 and unstable (spirals) if tr A > 0. It is helpful to remember
(108) and (109), so that A1 Ay =detA and A1 + A =tr A. If one eigenvalue is positive
(A1 > 0) and the other negative (12 < 0) (saddle points), the zero solution is automat-
ically unstable, and this corresponds to detA < 0. The other regions will have real
eigenvalues of the same sign (nodes) with det A = 1A, > 0; the unstable case (nodes)
satisfy A1 + A =tr A > O while the stable case (nodes) satisfy A; + 1> =trA < 0. This
classification of the stability of the zero solution (including phase plane) for linear
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Figure 4.3.20 Phase plane and stability for linear systems classified by determinant and trace.

W

systems using trace and determinants is graphed in figure 4.3.20. From the figure,
we see an interesting theorem: the solution x = 0 is stable for linear systems if and
only if detA > 0 and trA < 0. If detA =0, at least one eigenvalue is zero.

Exercises

In Exercises 1-6, find the direction field using software,

dx [a b
i |:c di| x =Ax, (66)
where
l.a=0,b=1,c=-4,d=0.
2.a=1,b=3,c=1,d=-1.
3.a=2,b=1,c=1,d=2.
4. a=-3,b=-2,c=1,d=-5.
5.a=3,b=—1,c=1,d=2.
6.a=-2,b=0,c=0,d =-3.

In Exercises 7-22, determine the eigenvalues and eigenvectors if the eigenvalues
are real (or use results from exercises from Section 4.2. if you have covered those
exercises). Also classify the system (state whether stable or unstable node, stable
or unstable spiral, center, saddle point) and in all cases sketch the phase plane of
the linear system. (As a hint, problems with * have complex eigenvalues.) When
checking your answers with those in the back of the book, keep in mind that any
nonzero multiple of the given eigenvector may be used.
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7. d—x:x,Q:x—FZy.
dt dt
8 d—)::Qx—y,——3x—2)
9%, d—)::—x—Sy,Z—i:x—i-y.
10. Z—::Zx—y,i—};:Zx—i-ﬁ‘.
11*.?1—)::x—y,%:x+y.
13. %:—5x—4y,%:2x+y.
14%. 2—:=X+5y,i]1—);=—2x—y.
15. i—f:y,i—i_h-l-y.
16*.d—x:—x—2y,@:2x—y.
dt dt
17. iii—)::—Sx—y,Z—f:M—y
18%*. Z—::x+2y,%:—4x—3y.
19%. fl—)::—x+4y,fl—f:—4x—y
20%*. 2—::3x+2y,%=—2x+3y.
21. %=4x+3y,%=3x+4y.
22. %=2x+3y,%=3x+2y.

In Exercises 23-35, determine the eigenvalues and eigenvectors if the eigenvalues
are real (or use results from exercises from Section 4.2 if you have covered those
exercises), classify the system (state whether stable or unstable node, stable or unsta-
ble spiral, center, saddle point) and in all cases sketch the phase plane of the linear
system. (As a hint, problems with * have complex eigenvalues.) When checking your
answers with those in the back of the book, keep in mind that, any nonzero multiple
of the given eigenvector may be used:

dx |a b
E = |:C d:l X —AX, (67)
where

23* a=0,b=1,c=—4,d=0.
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24, a=1,b=3,c=1,d=-1.

25, a=2,b=1,c=1,d=2.

26%, a=-3,b=-2,c=1,d =-5.

27*. a=3,b=—1,c=1,d=2.

28. a=-2,b=0,c=0,d=-3.

29. a=1,b=0,c=1,d=-3.

30, a=-1,b=3,c=1,d=1.

3. a=4,b=-3,c=1,d=0.

2% a=—-1,b=2,c=-2,d=—1.

33, a=2,b=—-1,c=1,d=0.

34, a=3,b=2,c=0,d=4.

35, a=1,b=0,c=0,d =-3.

36. For Exercises 23-28 without finding the eigenvalues, classify the system (stable
or unstable node, stable or unstable spiral, center, saddle point), determine using
the trace and determinant condition.

37. For Exercises 29-35 without finding the eigenvalues, classify the system (stable

or unstable node, stable or unstable spiral, center, saddle point), determine using
the trace and determinant condition.

In Exercises 38—41, graph the phase portrait given the eigenvalues and the eigen-

vectors:

TN [ -,
SN p—
TN (| R

41. )u1=—1, |:ij|, )"22_27 |:_11:|



