Electromagnetic Theory

CREDIT HOURS FIRST LEVEL (PHYSICS / PHYSICS AND COMPUTER SCIENCE PROGRAM)

104 PH

COLLECTED BY DR. FATEMA ALZAHRAA MOHAMMAD

PHYSICS DEPARTMENT-FACULTY OF SCIENCE-DAMIETTA UNIVERSITY-EGYPT)

CONTENTS

<u> Chapter 1: Electric Forces and Electric Fields</u>

- **Properties of Electric Charges.**
- Insulators and Conductors.
- Coulomb's Law.
- The Electric Field.
- Electric Field Lines.

<u> Chapter 2: Gauss Law</u>

- Electric Flux.
- Gauss's Law.
- Applications of Gauss's Law to Various Charge Distributions.

Chapter 3: Electric Potential

- **Electric Potential and Potential Difference.**
- Potential Difference in a uniform Electric Field.
- Obtaining the Value of the Electric Field from the Electric Potential.

Chapter 4: Capacitance and Dielectrics

- Definition of Capacitance.
- Calculating Capacitance.
- **Combinations of Capacitors.**
- **Energy Stored in a Charged Capacitors.**

Chapter 5: Magnetic Fields

- Magnetic Fields and Forces.
- Motion of a charged Particle in a Uniform Magnetic Field.
- Magnetic Force Acting on a Current-Carrying Conductor.
- Torque on a current loop in a uniform magnetic field.

Chapter 6: Sources of Magnetic Fields

- The Biot-Savart Law.
- Ampere's Law.
- Magnetic Flux.
- Displacement Current and the General Form of Ampere's Law.

Chapter7: Faraday's Law and inductance of magnetic fields

- Faraday's Law of induction.
- Motional emf.
- Induced emf and electric fields.
- Maxwell Equations.

History

600 BC
1600 AD
1735 AD
1750 AD
1770 AD
1890 AD

Greeks first discover attractive properties of amber when rubbed. Electric bodies repel as well as attract. du Fay: Two distinct types of electricity Franklin: Positive and Negative Charge Coulomb: "Inverse Square Law" J.J. Thompson: Quantization of electric charge - "Electron"

Electrostatics

Summary of things we know:

- 1. Something called "electric charge" exists on matter. We detect it's presence by attraction or repulsion to other "charge".
- 2. Two kinds of charge:
 - 1. Positive which we attribute to a deficit of electrons.
 - 2. Negative which we attribute to an excess of electrons.
 - 3. In matter, the positive charges are stuck in place in the nuclei. Matter is negatively charged when extra electrons are added, and positively charged when electrons are removed.
- 3. "Electrons" are carriers of *negative* electric charge
- 4. Like charges repel; unlike charges attract
- 5. Charge is conserved in a closed system. The number of electrons always remains the same
- 6. <u>Conductors</u> permit electrons to flow; <u>Insulators</u> inhibit the flow of electrons.
- 7. Force of attraction or repulsion ~ 1 / r^2

What makes a good conductor?

Nickel	Atom	(Z=28)
--------	------	--------

Neutrons

SHELL	Sub shell	Max # of electrons
K	S	2
L	S	2
	р	6
М	S	2
	р	6
	d	10

Copper atom

29 Protons

29 Electrons

29 Neutrons

Let's introduce some definitions before we continue:

to quantify "electric charge" we label the amount of charge on a body as: q

q = quantity of electric charge

We can have -q (negative charge) or +q (positive charge) We further define a basic unit of charge (just as we defined the basic unit of mass as a kilogram) as: the "Coulomb"

One Coulomb = $1.0 C = 6.242 \times 10^{18}$ electrons

This means that a SINGLE electron carries a very small charge. Can you figure out how much charge (in "Coulombs") are on a single electron?

-_____ C on 1 e⁻

This number is a constant and a very important value. It also represents the charge on the PROTON (but +)

Charge is Quantized

Q = MULTIPLE OF AN ELEMENTARY CHARGE E,

 $E = 1.6 \times 10^{-19} \text{ COULOMBS}$

<u>Charge</u>		Mass Diamete	Diameter
electron	- e	1	0
proton	+e	1836	~10 ⁻¹⁵m
neutron	0	1839	~10 ⁻¹⁵m
positron	+e	1	0

(Protons and neutrons are made up of quarks, whose charge is quantized in multiples of e/3. Quarks can't be isolated.)

Electric Charge

The Transfer of Charge

Some materials attract electrons more than others.

Electric Charge

The Transfer of Charge

Glass Rod

As the glass rod is rubbed against silk, electrons are pulled off the glass onto the silk.

Electric Charge

The Transfer of Charge

Usually matter is charge neutral, because the number of electrons and protons are equal. But here the silk has an excess of electrons and the rod a deficit.

The Transfer of Charge

Glass and silk are insulators: charges stuck on them stay put.

Typical current in a lightning bolt is 40,000 Amperes (that's about 40,000 Coulombs per second) with a voltage of up to 100,000,000 volts.