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Data structure can be classified in to major types:

Linear Data Structure (Chapter 4, 5 and 6)

Non-linear Data Structure (Chapter 7)

Categories of Data Structure
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A data structure is said to be linear if its elements 

form a sequence, or, in other words, a linear list.

There are basically two ways of representing such 

linear structure in memory.

a) One way is to have the linear relationships 
between the elements represented by means of 
sequential memory location. These linear 
structures are called arrays.

b) The other way is to have the linear relationship 
between the elements represented by means of 
pointers or links. These linear structures are called 

linked lists.

Linear Data Structure:
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The common examples of linear data structure are

Arrays

Queues

Stacks

Linked lists

Common examples of linear data structure
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Non-linear Data Structure
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This structure is mainly used to represent data 

containing a hierarchical relationship between 

elements.

–e.g. graphs,  family trees and table of contents.



Operations on linear structure 
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Operation on linear structure (array or linked list):

a) Traversing: Processing each element in the list. 

b) Searching: Finding the location of a particular 

element in with a given value or the record with a 

given key. 

c) Insertion: Adding a new element to the list.

d) Deletion: Removing an element from a list.

e) Sorting: Arranging the elements in some type of 

order (Ascending / Descending).

f) Merging: Combining two lists into a single list. 



Linear Arrays 
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• The simplest type of data structure is a linear (or one 

dimensional) array. 

• A  linear array is a list of a finite number n of similar 

data elements such that: 

a) The elements of the array are referenced 

respectively by an index set consisting of n 

consecutive numbers, usually 1, 2, 3 . . . . . . . n. 

b) The elements of the array are stored respectively in 

a successive memory locations. 

• if we choose the name A for the array, then the 

elements of A are denoted by subscript notation



Arrays 
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Linear Arrays 
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Advantage :-

– Structure is simple . 

– Arrays are easy to traverse ,search & sort.

Disadvantages:-

– Insertion & deletion is difficult .It involves data 

movement. 



Linear Arrays 
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If we choose the name A for the array, then the 

elements of A are denoted by subscript notation. 

The number k in A[k] is called subscript or index 



Linear Arrays 
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N is called the length 

Length=UB-LB+1

UB is largest index, called upper bound 

LB is smallest index, called lower bound. 

Note that Length=UB when LB=1



Linear Arrays: Example 4.1.  
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Example 4.1 (a): Let data is a six element linear array 

of integer such that:

DATA [1] = 247 DATA [2] = 56 DATA [3] =429 

DATA [4] =135 DATA [5] = 87  DATA [6] =156

• DATA 247, 56, 429, 135, 87

• This type of array data can be pictured in the form:



Linear Arrays: Example 4.1. 
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Example 4.1 (b): AUTO to record the number of 

automobiles sold each year from 1932 to 1984

AUTO[k]=number of automobiles sold in the year k

LB=1932 

UB=1984

Length=UB-LB+1=1984-1930+1=55

Index are integers  from 1932 to 1984



Linear Arrays: Example 4.1. 
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Linear Arrays 
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Each programing language has its own rules for 

dealing arrays, each such declaration must give, 

implicitly or explicitly, three items of information's:

1.The name of the array

2.The data type of the array and 

3.The index set of the array

• Declaration of the Arrays: Any array declaration 

contains: 

1. the array name, 

2. the element type and 

3. the array size.



Linear Arrays 
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• Declaration of the Arrays: Any array declaration 

contains: the array name, the element type and the 

array size.

• Initialization of an array is the process of assigning 

initial values. Typically declaration and initialization 

are combined.



Example 4.2.

21



Allocate Memory Space
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• Fortran and Pascal, allocate memory space for arrays 

statically the size is fixed during the program execution.

• Some programing language allow one to read an integer n 

and then declare an array with n elements,   such 

programing are said to allocate memory dynamically  



3. Representation of Linear Arrays in Memory
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Let LA be a linear array in the memory of a computer. 

Recall that the memory of computer is simply a sequence 

of address location as in figure below;



3. Representation of Linear Arrays in Memory
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LOC(LA[K])=address of the element LA[K] of the array LA

Computer only keep the addresses of the first element 

Base(LA) of the array. 

Base(LA) is called the base address 

The address of any element is calculated by

LOC(LA[K])=Base(LA)+W(K-LB)

Where W is number of words per memory cell 



Example 3:
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Consider the array also AUTO in example 2 which record the 

number of automobile sold each year from 1932 through 1984. 

Suppose AUTO appear in memory as picture in fig. (2) i.e base  

AUTO = 200 and w=4 word per memory cell for AUTO.

Find the address of the  element which store the info about 

sale in year 1965?



Example 3:
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• LOC (AUTO [1932]) = 200

• LOC (AUTO [1933]) = 204

• LOC (AUTO [1934]) = 208

• The address of the array element for the year K = 1965 

can be obtained by using the equation of the formula.

LOC (LA [K]) = Base (LA) + w(K – Lower  bound)

LOC (LA [1965]) = 200+4(1965 – 1932)

=200+4(33) = 200+132 = 332

BASE (LA) = BASE (AUTO) = 200 

where w=4, K=1965, LB= 1932   

LOC (LA [1965]) = 332.



Example 3:
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Example 3:
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Example 3:
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Problem
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Traversing Linear Array
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Algorithm 4.1: Traversing Linear Array
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Algorithm 4.1’: Traversing Linear Array
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Here LA = linear array with lower bound (LB) with upper 

bound (UB). This algorithm transverse LA applying an 

operation PROCESS to each element of LA.



Example 4.4
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Consider example 4.1(b), 

(a) find the number NUM of year during which more than 

300 automobile were sold.

Solution: using the algorithm

1) Set NUM := 0 [initialize counter]

2) Repeat for K = 1932 to 1984

If Auto [K] ˃300; then set NUM: = NUM+1

End of loop 

3) Loop.



Example 4.4
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(b) Print each year and the number of automobiles sold in 

that year. 

Solution: using the algorithm

1) Repeat for K = 1932 to 1984:

Write:  K, Auto [K] .

End of loop 

2) Loop.



Example
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Example
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Problem
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Inserting and Deleting 
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Inserting and Deleting 
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• Insert at the end can easily done 

• Inserting in the middle  half of the elements move 

downward  increasing subscript 

• Deleting from the end of a Linear Array can easily done

• Delating from the middle half of the data must move 

upward  decreasing the subscript 



Inserting and Deleting 
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Inserting and Deleting 
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Inserting and Deleting 
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Add Ford then Add Taylor then Remove Davis



Inserting into a Linear Array
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(Algorithm:(Inserting into a linear Array) 

INSERT (LA, N, K, ITEM).

Here LA is a linear array with N elements and K is a 

positive integer such that K ≤N. this algorithm inserts an 

element ITEM into the Kth position in LA.



Deleting from Linear Array
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(Deleting from a Linear Array) DELETE (LA, N, K, ITEM) 

Here LA is a Linear Array with N element and K is positive 

integer such that K≤ N. 

This algorithm deletes the kth element from LA

1.Set ITEM := LA[K]

2.Repeat for J = K to N-1

[Move Jth element upward. ] Set LA [J]:= LA [J+1]

[End of loop]

3. [Reset the number N of elements in LA] Set N:= N-1

4.Exit.



Deleting from Linear Array
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Sorting in Linear Array:
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Sorting an array is the ordering the array elements in 

ascending (increasing from min to max) 

Or descending (decreasing – from max to min) order.

• Example:

• {2 1 5 7 4 3}  {1, 2, 3, 4, 5,7} ascending order

• {2 1 5 7 4 3}  {7,5, 4, 3, 2, 1} descending order



Bubble sort 
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• The technique we use is called “Bubble Sort”

• The bigger value gradually bubbles their way up to the 

top of array like air bubble rising in water, 

• While the small values sink to the bottom of array.

• This technique is to make several passes through the 

array. 

• On each pass, successive pairs of elements are 

compared. 

• If a pair is in increasing order (or the values are 

identical), we leave the values as they are. If a pair is in 

decreasing order, their values are swapped in the 

array.



Example 4.2.
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Example.  Sort {5, 1, 12, -5, 16} using bubble sort.



Sorting; Bubble sort:  Algorithm 4.4 
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Example
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Example. Using the bubble sort algorithm, Algorithm 

4.4, find the number C of comparisons and the number 

D of interchanges which alphabetize the n =6 letters in 

PEOPLE.



Example
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Example. Using the bubble sort algorithm, Algorithm 4.4, find 

the number C of comparisons and the number D of 

interchanges which alphabetize the n =6 letters in PEOPLE.



Bubble Sort Time Complexity
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• Best-Case Time Complexity

– The scenario under which the algorithm will 

do the least amount of work (finish the 

fastest) 

• Worst-Case Time Complexity

– The scenario under which the algorithm will 

do the largest amount of work (finish the 

slowest).



Bubble Sort Time Complexity
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• Best-Case Time Complexity

– Array is already sorted

– Need  1 iteration with (N-1) comparisons

• Worst-Case Time Complexity

– Need N-1 iterations

– (N-1) + (N-2) + (N-3) + …. + (1)  =  (N-1)* N / 2

Called Linear Time

O(N)

Order-of-N

Called Quadratic Time

O(N2)

Order-of-N-square



Searching in Linear Array:

55

• The process of finding a particular element of an array 

is called Searching”. 

• If the item is not present in the array, then the search is 

unsuccessful.

• There are two types of search (Linear search and 

Binary Search)



Linear Search:
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The linear search compares each element of the array 

with the search key until the search key is found. 

To determine that a value is not in the array, the

program must compare the search key to every element 

in the array. 

It is also called “Sequential Search” because it traverses 

the data sequentially to locate the element.



Linear Array:

57



Linear search Complexity
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• Worst-Case Time Complexity

– Need n+1 iterations

– F(n)=n+1

• Average-Case Time Complexity

– F(n)=(n+1)/2



Linear search Complexity
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Linear search Complexity
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4.9. Multidimensional Arrays

1. Two-Dimensional Arrays

2. Example 4.11

3. Representation of Two-Dimensional Arrays in Memory

4. Example 4.12

Chapter 4: Arrays, Records and Pointers
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Binary search
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Sequential search

• sequential search: Locates a target value in an array / list by 
examining each element from start to finish. 

– How many elements will it need to examine?

– Example: Searching the array below for the value 42:

– Notice that the array is sorted.  Could we take advantage of this?

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

i
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Binary search

• binary search: Locates a target value in a sorted array / list 
by successively eliminating half of the array from consideration.

– How many elements will it need to examine?

– Example: Searching the array below for the value 42:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

min mid max



65

Runtime Efficiency

• How much better is binary search than sequential search?

• efficiency: A measure of the use of computing resources by code.

– can be relative to speed (time), memory (space), etc.

– most commonly refers to run time

• Assume the following:

– Any single C#  statement takes the same amount of time to run.

– A method call's runtime is measured by the total of the 
statements inside the method's body.

– A loop's runtime, if the loop repeats N times, is N times the 
runtime of the statements in its body.
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Sequential search

• What is its complexity class?

public int indexOf(int value) {

for (int i = 0; i < size; i++) {

if (elementData[i] == value) {

return i;

}

}

return -1;   // not found

}

• On average, "only" N/2 elements are visited

– 1/2 is a constant that can be ignored     O(N)

N

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103
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Binary search

• binary search successively eliminates half of the elements.

– Algorithm: Examine the middle element of the array.

• If it is too big, eliminate the right half of the array and repeat.

• If it is too small, eliminate the left half of the array and repeat.

• Else it is the value we're searching for, so stop.

– Which indexes does the algorithm examine to find value 42?

– What is the runtime complexity class of binary search?

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

min mid max
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Binary search runtime

• For an array of size N, it eliminates ½ until 1 element remains.

N, N/2, N/4, N/8, ..., 4, 2, 1

– How many divisions does it take?

• Think of it from the other direction:

– How many times do I have to multiply by 2 to reach N?

1, 2, 4, 8, ..., N/4, N/2, N

– Call this number of multiplications "x".

2x = N

x = log2 N

• Binary search is in the logarithmic complexity class.
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a  c  d  f  g  h  j  l  m  o  p  r  s  u  v  x  z

binary search for the letter ‘j’

center element

search interval

Algorithm Examples
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a  c  d  f  g  h  j  l  m  o  p  r  s  u  v  x  z

binary search for the letter ‘j’

center element

search interval

Algorithm Examples
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a  c  d  f  g h  j  l  m  o  p  r  s  u  v  x  z

binary search for the letter ‘j’

center element

search interval

Algorithm Examples
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a  c  d  f  g h  j  l  m o  p  r  s  u  v  x  z

binary search for the letter ‘j’

center element

search interval

Algorithm Examples
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a  c  d  f  g h j  l  m o  p  r  s  u  v  x  z

binary search for the letter ‘j’

center element

search interval

found !

Algorithm Examples



Binary search
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Complexity of the Binary search algorithm 
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• Worst-Case Time Complexity

– F(n)=log(n)+1



Example

76



Limitations of the binary Search algorithm 

77



Multidimensional Arrays

1. Two-Dimensional Arrays

2. Example 4.11

3. Representation of Two-Dimensional Arrays in Memory

4. Example 4.12

4.9 Multidimensional Arrays
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Linear array is one dimensional array, 

use one subscript such as  A[i]

Two dimensional array 

uses two subscripts such as  A[i,j] 

Multidimensional array 

uses 3-7 subscripts such as  A[i,j,k].

Multi-dimensional Arrays

79



Two dimensional Array: 

A is a collection of mxn data elements such that 

each element is specified by a pair of integers 

(such as J, K) called subscripts with the property 

that 1≤ J≤ M and 1≤ K≤n

The element of A with first subscript J and second 

subscript K will be denoted by A [J,K].

Two dimensional arrays are sometimes called 

(matrices) matrix array.

Two Dimensional Arrays
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 It is also called matrices in mathematics and table 

in business applications. 

Size is m.n 

 Length=upper bound –lower bound+1

 LB of Regular arrays=1

Dimensions of INTEGER NUMB(2:5,-3:1)

 length of first dimension =?

 length of second dimension= ?

The NUMB dimension=?

Two Dimensional Arrays
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Example 4.11 
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Example 4.11

Class of 25 students is given 4 tests.

Store the data in a 25×4 matrix SCORE 

SCORE[K,L] contains the Kth student’s score on the 

Lth Test.



M×N rectangular matrix will be represented in memory 

by a block of m.n sequential memory locations.

Programing language will store the array A either in 

two ways:

1.Column Major Order:   

2. Row Major Order 

Representation depends upon the program not user

Representation of Two-Dimensional Arrays in Memory
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Representation of Two-Dimensional Arrays in Memory
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(a) Column-major order

(b) Row-major order

A A SubscriptSubscript



Representation of Two-Dimensional Arrays in Memory
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Representation of Two-Dimensional Arrays in Memory
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 Linear array do not keep track of the address LOC(A[k]) 

of every element A[k], 

 but does keep the track of Base( A), the address of first 

element.

 formula  LOC(A[k] = base (A) + w(k-1)

 Same situation holds for two-dimensional mxn array A.

Computer does not keep the Address of all elements in 

the array 

Computer keeps track of BASE(A) which is the address 

of the first element A[1,1] of A

Computer computes the address LOC(A[J,K]) of the 

element A[J,K] using two different formulas. 

Representation of Two-Dimensional Arrays in Memory
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LOC (A [J, K]) = Base (A) + w [M (K-Col_LB) + (J-Row_LB)]

LOC (A [J, K]) = Base (A) + w [M (K-1) + (J-1)]

 LOC (A [J, K]):is the location of the element in the Jth 

row and Kth column. 

 Base (A) : is the base address of the array A. 

 w :is the number of bytes required to store single 

element of the array A. 

 M :is the total number of rows in the array. 

 J :is the row number of the element. 

 K :is the column number of the element. 

In case of Column Major Order:

88



LOC (A [J, K]) = Base (A) + w [N (J-Row_LB) + (K-Col_LB)]

LOC (A [J, K]) = Base (A) + w [N (J-1) + (K-1)]

 LOC (A [J, K]):is the location of the element in the Jth 

row and Kth column. 

 Base (A) : is the base address of the array A. 

 w :is the number of bytes required to store single 

element of the array A. 

 N : is the total number of columns in the array.

 J :is the row number of the element. 

 K :is the column number of the element. 

In case of Row Major Order:
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Example 4.12 
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Consider the 3×4 array A

Suppose Base(A)=100 and there are w=4 words per 

memory cell, 

A. suppose the programing language stores two-

dimensional arrays using row-major order. Find the 

location of the element A[2,3]

B. suppose the programing language stores two-

dimensional arrays using column-major order. Find 

the location of the element A[2,3]



Example 4.12 
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The formula for LOC (A [J, K]) is

LOC (A [J, K]) = Base (A) + w [N (J-Row_LB) + (K-Col_LB)]

Row_LB=1, K-Col_LB=1 

 LOC (A [J, K]) = Base (A) + w [N (J-1) + (K-1)]

LOC (A [2, 3]) = 100 + 4 [4 (2-1) + (3-1)] 

= 100 + 4 [4 (1) + 2] 

= 100 + 4 [4 + 2] 

=124



Example 4.12 : Column-major order
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The formula for LOC (A [J, K]) is

LOC (A [J, K]) = Base (A) + w [M (K-1) + (J-1)]

LOC (A [2, 3]) = 100 + 4 [3 (3-1) + (2-1)] 

= 100 + 4 [3 (2) + 1] 

= 100 + 4 [6+ 1] 

=128



Logical and Physical view
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The difference between the logical and physical view 

of data

 Logical views of 3×4 matrix array A 

 Is rectangular array of data where A[K,J] is an element 

appears in row J and column K.

Physical view is the representation in the memory as 

a linear collection of memory cells 

E.g.  certain data may be viewed  logically as trees or 

graphs although physically the data will be stored 

linearly in memory cells   



Multi-dimensional arrays 
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Multi-dimensional arrays 
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Example
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Example
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Example
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Example
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Problem
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Matrices 

1. Algebra of Matrices

2. Example 4.23

3. Algorithm 4.7 (Matrix Multiplication)

4. Example 4.24

4.13. Matrices 
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Matrices Multiplication Algorithm
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 Input two matrixes, Output Output matrix C.

Matrix-Multiply(A, B)

1. if columns [A] ≠ rows [B]

2. then error "incompatible dimensions"

3. else

4. for i =1 to rows [A]

5. for j = 1 to columns [B]

6. C[i, j] =0

7. for k = 1 to columns [A]

8. C[i, j]=C[i, j]+A[i, k]*B[k, j]

9. return C

Complexity O(n^3)



Algorithm Description
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To multiply two matrixes sufficient and necessary 

condition is "number of columns in matrix A = number of 

rows in matrix B".

Loop for each row in matrix A.

Loop for each columns in matrix B and initialize output 

matrix C to 0. 

This loop will run for each rows of matrix A.

Loop for each columns in matrix A.

Multiply A[i,k] to B[k,j] and add this value to C[i,j]

Return output matrix C.
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