Data Structure

Sy s S
cudad) @3@\9 sluos| @@b A48 ﬂ‘)

By
Dr. Reda Elbarougy
o Lay [
Lecturer of computer sciences
In Mathematics Department
Faculty of Science
Damietta University

@Jﬁl\ d_palaall eﬁ)

2020-02 1 5 palaall

2020-03-03 2 5 palaall

_2020-03-10 | _ 35y
2020.03:17 a5
-l

6 5 _palall

7 b _palaall

8 b palaall

0 5 palaall

10 5_palaal)

Arrays, Records and Pointers

Chapter 4: Arrays, Records and Pointers

Introduction
Linear Arrays and Some Examples
Representation of Linear Arrays in Memory

Traversing Linear Arrays
1. Algorithm 4.1: traversing a linear array
2. Algorithm 4.1": traversing a linear array
5. Inserting and Deleting
1. Algorithm 4.2: Inserting into a linear array
2. Algorithm 4.3: Deleting from a linear array
6. Sorting; Bubble Sort

1. Algorithm 4.4: Bubble sort
2. Complexity of the bubble sort algorithm

> W e

Chapter 4: Arrays, Records and Pointers

/. Searching: Linear search

1. Algorithm 4.5: linear search
2. Complexity of the linear search algorithm

8. Searching: Binary Search
1. Algorithm 4.6: Binary search
2. Complexity of the binary search algorithm
3. Limitation of the Binary Search Algorithm

Categories of Data Structure

Data structure can be classified in to major types:
» Linear Data Structure (Chapter 4, 5 and 6)
» Non-linear Data Structure (Chapter 7)

Linear Data Structure:

A data structure Is said to be linear If its elements
form a sequence, or, in other words, a linear list.

There are basically two ways of representing such
linear structure in memory.

a) One way Is to have the linear relationships
between the elements represented by means of

sequential memory location. These linear
structures are called arrays.

b) The other way is to have the linear relationship
between the elements represented by means of

pointers or links. These linear structures are called
linked lists.

7

Common examples of linear data structure

The common examples of linear data structure are
» Arrays

» Queues
» Stacks
» Linked lists

Non-linear Data Structure

This structure i1s mainly used to represent data

containing a hierarchical relationship between
elements.

—e.g. graphs, family trees and table of contents.

Operations on linear structure

Operation on linear structure (array or linked list):
a) Traversing: Processing each element in the list.

b) Searching: Finding the location of a particular
element in with a given value or the record with a
given key.

c) Insertion: Adding a new element to the list.
d) Deletion: Removing an element from a list.

e) Sorting: Arranging the elements in some type of
order (Ascending / Descending).

f) Merging: Combining two lists into a single list.

10

Linear Arrays

* The simplest type of data structure is a linear (or one
dimensional) array.

* A linear array is a list of a finite number n of similar
data elements such that:

a) The elements of the array are referenced
respectively by an index set consisting of n
consecutive numbers, usually 1, 2,3 n.

b) The elements of the array are stored respectively In
a successive memory locations.

* If we choose the name A for the array, then the
elements of A are denoted by subscript notation

11

Arrays

Array

Single Dimesnsional Array Multidiemensional Array

Ex:- STUDENT MARKS

ub| Sub | Sub | Sub | Sub

S Rolln 1 2 3 4

1 50 60 70 55

Amit > | 40 | 20 | 90 | 75
Rohan
Rita '
Sunil :
uni e

12

Linear Arrays

Advantage :-
— Structure is simple .
— Arrays are easy to traverse ,search & sort.

Disadvantages:-

— Insertion & deletion is difficult .It involves data
movement.

13

Linear Arrays

If we choose the name A for the array, then the
elements of A are denoted by subscript notation.

The number k in A[k] is called subscript or index
By, B, By e B

or by the parenthesis notation

A(1), A(2),A(3)...... A (n)
or by the bracket notation
BL1L:AI2EA L) asns s A [n]
Example:

A linear array A[8] consisting of numbers is pictured in following figure.

] 2 4 < 6

A0 AN A2l A[S] A4] A[S] AlB] A7)
int A[8] = {1. 2, 3. 4, 5, 6, 7, 8};

14

Linear Arrays

N Is called the length
Length=UB-LB+1

UB is largest index, called u
LB Is smallest index, called
Note that Length=UB when

Dper bound
ower bound.

| B=1

15

Linear Arrays: Example 4.1.
Example 4.1 (a): Let data is a six element linear array

of integer such that:

DATA [1] = 247 DATA [2] = 56 DATA [3] =429

DATA [4] =135 DATA [5] = 87 DATA [6] =156
 DATA 247, 56, 429, 135, 87

* This type of array data can be pictured in the form:

DATA

l

247

56

29

4
4 135
8
l

56

OR

DATA

247 | 56

16

Linear Arrays: Example 4.1.

Example 4.1 (b): AUTO to record the number of
automobiles sold each year from 1932 to 1984

AUTO[k]=number of automobiles sold in the year k
LB=1932

UB=1984

Length=UB-LB+1=1984-1930+1=55

Index are integers from 1932 to 1984

17

ﬁuz atlﬂ,};« Nl
'“:.fbr(:lnt“‘i. = 03 i<10 $44)

o

| NN

’eorunt 1 = 0;i<10;i44)
A
S printff‘?alua J.n tho array %d\n”,ali]);

x

: VA

: ..* - ‘ :Q‘ﬂ':;a' '-1'-4
B -

-

18

Linear Arrays

Each programing language has its own rules for
dealing arrays, each such declaration must give,
implicitly or explicitly, three items of information's:

1. The name of the array

2. The data type of the array and

3. The index set of the array

« Declaration of the Arrays: Any array declaration
contains:
1. the array name,
2. the element type and

3. the array size.
19

Linear Arrays

« Declaration of the Arrays: Any array declaration
contains: the array name, the element type and the

array size. T

int a[20], b[3],c[7];
float f[5], c[2];
char m[4], n[20];

* Initialization of an array Is the process of assigning
initial values. Typically declaration and initialization
are combined.

Examples:

float, b[3]={2.0, 5.5, 3.14};
char name[4]= {'E’,'m’,'r’,'e"};

int c[10]={0}; 20

Example 4.2.

Allocate Memory Space

* Fortran and Pascal, allocate memory space for arrays
statically the size is fixed during the program execution.

« Some programing language allow one to read an integer n
and then declare an array with n elements, such
programing are said to allocate memory dynamically

22

3. Representation of Linear Arrays in Memory

Let LA be a linear array in the memory of a computer.
Recall that the memory of computer is simply a sequence
of address location as in figure below;

1000

1001

1002

1003

1004

23

3. Representation of Linear Arrays in Memory

LOC(LA[K])=address of the element LA[K] of the array LA

Computer only keep the addresses of the first element
Base(LA) of the array.

Base(LA) is called the base address

The address of any element is calculated by
LOC(LA[K])=Base(LA)+W(K-LB)

Where W is number of words per memory cell

24

Example 3:

Consider the array also AUTO in example 2 which record the
number of automobile sold each year from 1932 through 1984.
Suppose AUTO appear in memory as picture in fig. (2) i.e base
AUTO = 200 and w=4 word per memory cell for AUTO.

Find the address of the element which store the info about
sale in year 19657 200

201

202 AUTO [1932]
203 ~

204

205 ~ AUTO [1933]
2006

207 =

208

209 " AUTO | 1934]
25

210 _

Example 3:

« LOC (AUTO [1932]) = 200

« LOC (AUTO [1933]) = 204

« LOC (AUTO [1934]) = 208

The address of the array element for the year K = 1965
can be obtained by using the equation of the formula.
LOC (LA [K]) = Base (LA) + w(K — Lower bound)

LOC (LA [1965]) = 200+4(1965 — 1932)
=200+4(33) = 200+132 = 332
BASE (LA) = BASE (AUTO) = 200
where w=4, K=1965, LB= 1932
=2>LOC (LA [1965]) = 332. 2

Consider the linear arrays AAA(5:50), BBB(—-5:10) and CCC(18).

(a) Find the number of elements in each array.

(b) Suppose Base(AAA) =300 and w = 4 words per memory cell for AAA. Find the address
of AAA[15], AAA[35] and AAA[SS].

27

Consider the linear arrays AAA(5:50), BBB(—5:10) and CCC(18).

(a) Find the number of elements in each array.

{a) The number of elements is equal to the length; hence use the formula
Length=UB-LB+1

Accordingly, Length(AAA)=30-5+1=46
Length(BBB) =10~ (-5)+1=16
Length(CCC)=18~1+1=18

Note that Length(CCC) = UB, since LB = 1.

28

Consider the linear arrays AAA(5:50), BBB(-5:10) and CCC(18).

(b) Suppose Base(AAA) =300 and w = 4 words per memory cell for AAA. Find the address
of AAA[15], AAA[35] and AAA[SS].

() Use the formula

LOC(AAA[K]) = Base(AAA) + w(K - LB)
Hence:

LOC(AAA[15]) = 300 + 4(15 — 5) = 340
LOC(AAA35]) = 300 +4(35 - 5) = 420

AAA[SS] is not an element of AAA, since 55 exceeds UB = 50.

29

Consider the linear arrays XXX(=10:10), YYY(1935:1985), ZZZ(35). (a) Find the number of elements
in each array. (b) Suppose Base(YYY) = 400 and w = 4 words per memory cell for YYY. Find the address
of YYY[1942], YYY[1977] and YYY[1988].

30

31

Algorithm: (Traverse a Linear Array) Here LA is a Linear array with lower

boundary LB and upper boundary UB. This algorithm traverses LA
applying an operation Process to each element of LA.

1. [Initialize counter.] Set K=LB,

2. Repeat Steps 3 and 4 while KsSUB.

3. [Visit element.] Apply PROCESS to LA[K].

4. [Increase counter.] Set k=K+1.

[End of Step 2 loop.)
S. Exit.

32

Algorithm 4.1": Traversing Linear Array

Here LA = linear array with lower bound (LB) with upper
bound (UB). This algorithm transverse LA applying an
operation PROCESS to each element of LA.

Transversing a linear Array

|.Repeat for K= LB+UB

2.Apply PROCESS to LA[K]
[End of loop]

3.Exit.

33

Example 4.4

Consider example 4.1(b),

(a) find the number NUM of year during which more than
300 automobile were sold.

Solution: using the algorithm
1) Set NUM := 0 [initialize counter]
2) Repeat for K =1932 to 1984
If Auto [K] >300; then set NUM: = NUM+1
End of loop
3) Loop.

34

Example 4.4

(b) Print each year and the number of automobiles sold in
that year.

Solution: using the algorithm

1) Repeat for K = 1932 to 1984
Write: K, Auto [K] .

End of loop

2) Loop.

35

Suppose a company keeps a linear array YEAR(1920:1970) such that YEAR[K] contains the
number of employees born in year K. Write a module for each of the following tasks:

(e¢) To print each of the years in which no employee was born.
(b) To find the number NNN of years in which no employee was born.

(¢} To find the number N50 of employees who will be at least 50 years old at the end of the
year. (Assume 1984 is the current year.)

(d) To find the number NL of employees who will be at least L years old at the end of the
year. (Assume 1984 is the current year.)

Each module traverses the array.

36

Each module traverses the array.

(a) 1. Repeat for K = 1920 to 1970:
If YEAR|K]| =0, then: Write: K.
[End of loop.]
2. Return,

() 1. Set NNN:=0,
2. Repeat for K= 1920 to 1970:
If YEAR[K] =0, then: Set NNN:=NNN + 1.
[End of loop.]
3. Return.

(c) We want the number of employees born in 1934 or earlier.

I. Set N50:=0.
2. Repeat for K = 1920 to 1934:
Set N5O:= N50 + YEARI[K].
[Ead of loop.]
3. Return.

(d) We want the number of emplovees born in year 1984 — L or earlier.

1. Set NL:=0and LLL:=1984 - L.
2. Repeat for K=1920 to LLL:
Set NL:=NL + YEAR[K].
|[End of loop.)
3. Return.

37

An array A contains 25 positive integers. Write a module which

(a) Finds all pairs of elements whose sum is 25

(b) Finds the number EVNUM of elements of A which are even, and the number ODNUM of elements
of A which are odd

Suppose A is a linear array with n numeric values. Write a procedure
MEAN(A, N, AVE)

which finds the average AVE of the values in A, The arithmetic mean or average X of the values
Xy X3, 0 .0 4 X, 18 defined by

Each student in a class of 30 students takes 6 tests in which scores range between 0 and 100. Suppose the
test scores are stored in a 30 X 6 array TEST. Write a module which
(e) Finds the average grade for each test

(b) Finds the final grade for each student where the final grade is the average of the student’s five highest
test scores

(¢) Finds the number NUM of students who have failed, i.e., whose final grade is less than 60
(d) Finds the average of the final grades

38

39

Inserting and Deleting

Insert at the end can easily done

Inserting in the middle - half of the elements move
downward - increasing subscript

Deleting from the end of a Linear Array can easily done

Delating from the middle half of the data must move
upward -> decreasing the subscript

40

Deletion

Brown
Ford
Johnson
Smith
Taylor
Wagner

00 N O Ol b W N =

No data item can be deleted from an empty
array

41

0 NO O s W N

Insertion

Brown 1 Brown
Davis 2 Davis
Johnson 3 Johnson
Smith 4 Smith
Wagner 5 Wagner

6 Ford

7

8

Insert Fordat the End of Array

42

Inserting and Deleting

Add Ford then Add Taylor then Remove Davis

NAME NAME NAME NAME
Ford

Johnson
Snuth

Tsz'lm
Wapner

00 ~J O D o W N =

Inserting into a Linear Array

(Algorithm:(Inserting into a linear Array)
NSERT (LA, N, K, ITEM).

Here LA Is a linear array with N elements and K is a
positive integer such that K <N. this algorithm inserts an
element ITEM into the Kth position in LA.

Algorithm 4.2: (Inserting into a Linear Array) INSERT (LA, N, K, ITEM)
Here LA is a linear array with N elements and K is a positive integer such that
K < N. This algorithm inserts an element ITEM into the Kth position in LA.

1. [Initialize counter.] Set J : = N.
2. Repeat Steps 3 and 4 while J 2 K.
3. [Move Jth element downward.] Set LA[J + 1] := LA[J].
4, [Decrease counter.] SetJ :=J - 1.
[End of Step 2 loop.]
5. [Insert element.] Set LA[K] := ITEM.
6. |Reset N.] Set N:=N + 1.
7. Exit.

44

Deleting from Linear Array

(Deleting from a Linear Array) DELETE (LA, N, K, ITEM)

Here LA is a Linear Array with N element and K is positive
iInteger such that K< N.

This algorithm deletes the kth element from LA

1.Set ITEM = LA[K]
2.Repeat for J = Kto N-1
[Move J" element upward.] Set LA [J]:= LA [J+1]
[End of loop]
3. [Reset the number N of elements in LA] Set N:= N-1
4.EXit.

45

Deleting from Linear Array

Algorithm 4.3: (Deleting from a Linear Array) DELETE(LA, N, K, ITEM)

Here LA is a linear array with N elements and K is a positive integer such that
K < N. This algorithm deletes the Kth element from LA.

1. Set ITEM := LA[K].
2. RepeatforJ=KtoN-1:

[Move J + Ist element upward.] Set LA[J] := LA[J + 1].
[End of loop.)
[Reset the number N of elements in LA.] Set N: = N - 1.
4. Exit,

»

46

Sorting in Linear Array:

Sorting an array Is the ordering the array elements in
ascending (increasing from min to max)

Or descending (decreasing — from max to min) order.

* Example:
« {215743}-> {1, 2, 3,4, 5,7} ascending order
« {215743}->{7,5,4, 3, 2,1} descending order

47

Bubble sort

The technique we use is called “Bubble Sort"->

The bigger value gradually bubbles their way up to the
top of array like air bubble rising in water,

While the small values sink to the bottom of array.

This technigue is to make several passes through the
array.

On each pass, successive pairs of elements are
compared.

If a palr Is in increasing order (or the values are
identical), we leave the values as they are. If a pair is In
decreasing order, their values are swapped in the
array.

48

Example. Sort {5, 1, 12, -5, 16} using bubble sort.

5

1

12

16

12

16

12

16

12

16

ar| O an

16

(8)]

12

16

12

16

12

16

12

16

12

16

12

16

12

16

unsorted

5> 1, swap
5 <12, ok
12 > -5, swap
12 < 16, ok

1<5, ok
5> -5, swap

5< 12, ok

1>-5, swap

1<5, ok

5<1, ok

sorted

49

Algorithm: (Bubble Sort) BUBBLE (DATA, N)

Here DATA is an Array with N elements. This algorithm sorts the
elements in DATA.

1. for pass=1 to N-1.

2. for (i=0; i<= N-Pass; i++)

3. If DATA[i]>DATA[i+1], then:

Interchange DATA[i] and DATA[i+1].
[End of If Structure.]
[End of inner loop.]
[End of Step 1 outer loop.]
4. Exit.

50

Example. Using the bubble sort algorithm, Algorithm
4.4, find the number C of comparisons and the number
D of interchanges which alphabetize the n =6 letters in
PEOPLE.

51

Example. Using the bubble sort algorithm, Algorithm 4.4, find
the number C of comparisons and the number D of
Interchanges which alphabetize the n =6 letters in PEOPLE.

The sequences of pairs of letters which are compared in each of the n — 1 = 5 passes follow: a square

indicates that the pair of letters is compared and interchanged, and a circle indicates that the pair of letters
is compared but not interchanged.

Passi. [PEIOPLE,

E O P|P L|E,

Pass 2. P LEP,

EOLIP E|P,

Pass 3. L EPP

ELEOP?

Pass 4. E O'P R,
Pass 5. @L O PR

E

PO

PLE,

EOPL|PE

EL ER

EOLEPP

E

E

oL

L B

E PP,

QPR

EELQPP

e oL

EOPLEPD

EO

EL

PL

EP

OE

PP

EELOPRP

Since n = 6, the number of comparisons will be C =5+ 4+ 3 + 2 + 1 = 15. The number D of interchanges
depends also on the data, as well as on the number n of elements. In this case D =9,

52

Bubble Sort Time Complexity

 Best-Case Time Complexity

— The scenario under which the algorithm will
do the least amount of work (finish the
fastest)

 Worst-Case Time Complexity

— The scenario under which the algorithm will
do the largest amount of work (finish the
slowest).

53

Bubble Sort Time Complexity

_ . Called Linear Time
 Best-Case Time Complexity O(N) J
— Array is already sorted order-oti

— Need 1 iteration with (N-1) comparisons

O(N?)

Called Quadratic Time
Order-of-N-square

 Worst-Case Time Complexity

— Need N-1 iterations
—(N-1) + (N-2) + (N-3) +....+ (1) = (N-1)*N/?2

54

Searching in Linear Array:
* The process of finding a particular element of an array
Is called Searching”.

 If the item Is not present in the array, then the search is
unsuccessful.

* There are two types of search (Linear search and
Binary Search)

95

Linear Search:

The linear search compares each element of the array
with the search key until the search key iIs found.

To determine that a value is not in the array, the

program must compare the search key to every element
In the array.

It is also called “Sequential Search” because it traverses
the data sequentially to locate the element.

56

Linear search Complexity

 Worst-Case Time Complexity

— Need n+1 iterations
— F(n)=n+1

 Average-Case Time Complexity
— F(n)=(n+1)/2

58

Consider the alphabetized linear array NAME in Fig. 4-23.
(@)

(b)

Using the linear search algorithm, Algorithm 4.5, how many comparisons C are used to

locate Hobbs, Morgan and Fisher?

Indicate how the algorithm may be changed for such a sorted array to make an
unsuccessful search more efficient. How does this affect part (a)?

O G Ny A W N e

L
ol Y R

NAME

Allen

Clark

Dickens

Edwards

Goodman

Hobbs

Irwin

Klein

Lewis

Morgan

Richards

Scott

Tucker

Walton

Fig. 4-23

59

(a)

(b)

C{Hobbs) = 6, since Hobbs is compared with each name, beginning with Allen, until Hobbs is found
in NAME[6].

C(Morgan) = 10, since Morgan appears in NAME[10].

C(Fisher) = 15, since Fisher is initially placed in NAME[15] and then Fisher is compared with every
name until it is found in NAME[15]. Hence the search is unsuccessful.

Observe that NAME is alphabetized. Accordingly, the linear search can stop alter a given name
XXX is compared with a name YYY such that XXX <YYY (i.e., such that, alphabetically, XXX
comes before YYY). With this algorithm, C(Fisher) =5, since the search can stop after Fisher is
compared with Goodman in NAME[5].

60

Chapter 4: Arrays, Records and Pointers

4.9. Multidimensional Arrays
Two-Dimensional Arrays
Example 4.11

Representation of Two-Dimensional Arrays in Memory
Example 4.12

> W

61

62

Sequential search

e sequential search: Locates a target value in an array / list by
examining each element from start to finish.
— How many elements will it need to examine?

— Example: Searching the array below for the value 42:;

index| 0 |1(2|3|4|5|6|7|8(9|10|11(12|13|14|15| 16
value |[-41 2|7 (10]15{20(122{25|30|36(42|50|56|68|85|92|103

— Notice that the array is sorted. Could we take advantage of this?

63

Binary search

e binary search: Locates a target value in a sorted array / list
by successively eliminating half of the array from consideration.

— How many elements will it need to examine?

— Example: Searching the array below for the value 42:;

index| 0 |1(2|3|4|5|6|7|8(9|10|11(12|13|14|15| 16
value |[-41 2|7 (10]15{20(122{25|30|36(42|50|56|68|85|92|103

min mid max

64

Runtime Efficiency

e How much better is binary search than sequential search?

o efficiency: A measure of the use of computing resources by code.
— can be relative to speed (time), memory (space), etc.
— most commonly refers to run time

e Assume the following:
— Any single C# statement takes the same amount of time to run.

— A method call's runtime is measured by the total of the
statements inside the method's body.

— A loop's runtime, if the loop repeats N times, is N times the
runtime of the statements in its body.

65

Sequential search

e What is its complexity class?

public int i1ndexOf (i1nt wvalue) {

for (int 1 = 0; 1 < size; 1i1++) {)
1if (elementDatal[li] == wvalue) {
return 1i;
} ~ N
}
return -1; // not found D

}

index| 0|12 |3|4|5|6|7]|8]9|10(11|12(13|14(15] 16
value |[-41 2|7 (10]15{20(122({25|30|36(42|50|56|68|85(92|103

e On average, "only" N/2 elements are visited
— 1/2 is a constant that can be ignored > O(N) 6

Binary search

e binary search successively eliminates half of the elements.

— Algorithm. Examine the middle element of the array.
e If it is too big, eliminate the right half of the array and repeat.
o If it is too small, eliminate the left half of the array and repeat.
e Else it is the value we're searching for, so stop.

— Which indexes does the algorithm examine to find value 427
— What is the runtime complexity class of binary search?

index| 0|12 |3|4|5|6|7]|8]9|10(11|12(13|14(15] 16
value |[-41 2|7 (10]15{20(122({25|30|36(42|50|56|68|85(92|103

min mid max

67

Binary search runtime

e For an array of size N, it eliminates %2 until 1 element remains.
N, N/2, N/4, N/8, ..., 4, 2, 1

— How many divisions does it take?

e Think of it from the other direction:
— How many times do I have to multiply by 2 to reach N?

1,2,4,8, ..., N/4, N/2, N

— Call this number of multiplications "x".
2x=N
x =log, N

e Binary search is in the logarithmic complexity class.

68

Algorithm Examples

binary search for the letter j’
search interval
acdfghjlmoprsuvxz

|

center element

69

Algorithm Examples

binary search for the letter j’

search interval

| |

acdfghjlm

|

center element

70

Algorithm Examples

binary search for the letter j’

search interval

.

h i | m

Y

center element

71

Algorithm Examples

binary search for the letter j’

search interval

|

h i

Y

|

center element

72

Algorithm Examples

binary search for the letter j’

search interval

center element
found |

73

Complexity of the Binary search algorithm

 Worst-Case Time Complexity
— F(n)=log(n)+1

The complexity is measured by the number fin) of comparisons to locate ITEM in DATA where
DATA contains n elements. Observe that each comparison reduces the sample size in half. Hence
we require at most fin) comparisons to locate ITEM where

2" > n or equivalently fin) = Llog2 nl+ 1

That is, the running time for the worst case is approximately equal to log, n. One can also show that
the running time for the average case is approximately equal to the running time for the worst case.

75

\v,-,'vf " ' ‘ ‘,ﬁy;'
S\WDATAconhinslmooooglements.Obamthat SIS e G TN
, 2 . 1024 > 1000 - snd hence 3 » 1000% .1 000 000 1 22 7“

Acwrdinnly. using the binary search algorithm, one requires only about 20 oomparisongtcjﬁ
‘&oioaﬁonofuuiﬁeminadatamywiﬂlloooooom

',

Limitations of the Binary Search Algorithm

Since the binary search algorithm is very efficient (e.g., it requires only about 20 comparisons wit
an initial list of 1 000 000 elements), why would one want to use any other search algorithm

76

Since the binary search algorithm is very efficient (e.g., it requires only about 20 comparisons with
an initial list of 1 000 000 elements), why would one want to use any other search algorithm?

77

4.9 Multidimensional Arrays

Multidimensional Arrays
1. Two-Dimensional Arrays
Example 4.11

2
3. Representation of Two-Dimensional Arrays in Memory
4. Example 4.12

78

Multi-dimensional Arrays

» Linear array is one dimensional array,
»>use one subscript such as =2 A[i]
» Two dimensional array
»uses two subscripts such as =2 Ali,]]
» Multidimensional array
»uses 3-7 subscripts such as =2 All,},K].

79

wo Dimensional Arrays

Two dimensional Array:

> A IS a collection of mxn data elements such that
each element is specified by a pair of integers

(such as J, K) called subscripts with the property
that 1< J< M and 1< K<n

» The element of A with first subscript J and second
subscript K will be denoted by A [J,K].

» Two dimensional arrays are sometimes called
(matrices) matrix array.

I 2 3 -

I All, 1] All, 2] All, 3] All, 4]
Rows 2 Al2, 1] Al2, 2] Al2, 3] Al2, 4]
3 Al3, 1] Al3, 2] Al3, 3] A[3, 4]

80

wo Dimensional Arrays

> It Is also called matrices in mathematics and table
In business applications.

» Size iIs m.n
» Length=upper bound —lower bound+1
» LB of Reqgular arrays=1

» Dimensions of INTEGER NUMB(2:5,-3:1)
» length of first dimension =?
» length of second dimension= ?
» The NUMB dimension="?

81

Example 4.11
» Class of 25 students is given 4 tests.
» Store the data in a 25%4 matrix SCORE

» SCORE[K,L] contains the Kt student’s score on the

Lt Test.

Student

Test 1

Test 2

Test 3

Test 4

1
2
3

25

95
72

78

73
100

82

88
88
77

70

31
06
72

85

82

Representation of Two-Dimensional Arrays in Memory

» MxN rectangular matrix will be represented in memory
by a block of m.n sequential memory locations.

» Programing language will store the array A either In
two ways:

1.Column Major Order:
2. Row Major Order

» Representation depends upon the program not user

4 N2y
] i
’ }))
. I 4 | | §
- -~ 1
d‘——--————~>
r ?
v ' i

| I
| Hhicg
| =}
| ¢/ gh | 1S
| R <l A
————————— "’ mynjop J
| vvYyY
row major column major 83

A Subscript

(1, 1)
(2, 1) Column 1
(3’ l)
(1, 2)
(2, 2) Column 2
(3,2)
(1,.3)
(2.3) Column 3
(3.3)
(1, 4)
(2,4) Column 4
(3. 4)

[r—

(a) Column-major order

(b) Row-major order

Subscript

(1.1)
(1,2) ROW I
(1, 3)
(1.4)
(2, 1)
(2,2) ROW2
(2.3)
(2, 4)
(3, 1)
(3,.2) ROW3
3, 3)
3, 4)

84

Representation of Two-Dimensional Arrays in Memory

Row Major Order

offset = [rowlumbker * rowlen)l + collumber

Column Major Order

offset = [(collamber * collen! + rowhbam

Representation of Two-Dimensional Arrays in Memory

» Linear array do not keep track of the address LOC(A[K])
of every element AK],

» but does keep the track of Base(A), the address of first
element.

» formula LOC(A[Kk] = base (A) + w(k-1)

» Same situation holds for two-dimensional mxn array A.

» Computer does not keep the Address of all elements In
the array

» Computer keeps track of BASE(A) which Is the address
of the first element A[1,1] of A

» Computer computes the address LOC(A[J,K]) of the

element A[J,K] using two different formulas.
87

In case of Column Major Order:

LOC (A [J, K]) =Base (A) +w [M (K-Col LB) + (J-Row_LB)]
LOC (A [J, K]) =Base (A) +w [M (K-1) + (J-1)]

LOC (A [J, K]):Is the location of the element In the Jth
row and Kth column.

Base (A) : Is the base address of the array A.

w :Is the number of bytes required to store single
element of the array A.

M :is the total number of rows in the array.
J :Is the row number of the element.
K :1s the column number of the element.

88

In case of Row Major Order:

LOC (A [J, K]) =Base (A) +w [N (J-Row_LB) + (K-Col _LB)]
LOC (A [J, K]) =Base (A) +w [N (J-1) + (K-1)]

LOC (A [J, K]):Is the location of the element In the Jth
row and Kth column.

Base (A) : Is the base address of the array A.

w :Is the number of bytes required to store single
element of the array A.

N : Is the total number of columns in the array.
J :Is the row number of the element.
K :1s the column number of the element.

89

Example 4.12
Consider the 3x4 array A

10 (13 |24 | 3
|a1]|5 | 6817

g (91 1p |16

Suppose Base(A)=100 and there are w=4 words per
memory cell,

A. suppose the programing language stores two-
dimensional arrays using row-major order. Find the
location of the element A[2,3]

B. suppose the programing language stores two-
dimensional arrays using column-major order. Find
the location of the element A[2,3] 90

The formula for LOC (A [J, K]) Is

LOC (A [J, K]) =Base (A) + w [N (J-Row_LB) + (K-Col _LB)]
Row_LB=1, K-Col LB=1

= LOC (A [J, K]) =Base (A) +w [N (J-1) + (K-1)]

> LOC (A [2, 3]) =100 + 4 [4 (2-1) + (3-1)]

=100+41[4 (1) + 2]

=100+41[4 + 2] 10 [13 |24 | 3
=124 [41]5 (O)17
g 121 |10 |18
Low Addresses High Addresses

Address

10 113 | 24 | 3 41 | 5 @ 17 8 91 | 10 16

91

The formula for LOC (A [J, K]) Is

LOC (A [J, K]) =Base (A) +w [M (K-1) + (J-1)]

LOC (A [2, 3]) = 100 + 4 [3 (3-1) + (2-1)]
=100 + 4 [3 (2) + 1]
=100 + 4 [6+ 1]

E"“E_.. 100 104

13 |24

Address

10 3
=128]
4115 SE)17
8 |90 |16
Low Addresses High Addresses
108 112 116 120 124 2 136 140 144
10|41 |8 |13 |5 |91 |2a|@)|10]3a |17 |18

92

Logical and Physical view

» The difference between the logical and physical view
of data

» Logical views of 3x4 matrix array A

» |Is rectangular array of data where A[K,J] Is an element
appears in row J and column K.

» Physical view Is the representation in the memory as
a linear collection of memory cells

» E.g. certain data may be viewed logically as trees or
graphs although physically the data will be stored
linearly in memory cells

93

® The first references array dimension 1, the row.
® The second references dimension 2, the column.

® The third references dimension 3. This illustration uses the concept of a page to represent dimensions 3 and higher.

(1,1,3) (1,2,3) (1,3,3) (1,4,8]
(2,1,3) (2,2,3) (2,3,3)72,4,3)
(3,1,3) (3,2,3} 15, 3,3) (3,4,3)

“Tohun]

(1,1,2) (1,2,2) (1,3,2) (1,4,2]
. (2,1,2) (2,2,2) :2,5‘,2}‘:5,4,2} =
(3,1,2) :5,2,3}15:5,2} (3,4,2) -7

4:&,3} l4,3,3) (4,4,3)

(1,101,173 (1,2,1) [1,3,1) [1,4,1]
[2,1,1) [2,2,1) [2,3,1) [2,4,1]
(3,1,1) [3,2,1) [3,3,1) [3,4,1)
(4,1,1) [4,2,1) [4,3,1) [4,4,1)]

row

#,'2,2} i4,3,2) (4,4,2) -

94

To access the element in the second row, third column of page 2, for example, you use the subscripts (2,3,2)

Al2,3,2)

rd

|
8 .
JRY.
g 2

_mecﬂ-h-m
LY

Al

fy 1)

o b —

95

Let A be an # X n square matrix array. Write a module which

(a) Finds the number NUM of nonzero elements in A
(b} Finds the SUM of the elements above the diagonal, i.e., elements AlL, J] where I<J
(¢) Finds the product PROD of the diagonal elements ¥ TR O

96

(a) 1.

e
.

(6)

ol o

-
-

()

Set NUM :=0.
Repeat for 1 =1 to N:
Repeat for J =1 to N:
If AT, J] #0, then: Set NUM = NUM + 1.
[End of inner loop.]
[End of outer loop.]
Return.

Set SUM = 0.
Repeat for J =2 to N:
Repeat for [=1t0 J -1
Set SUM = SUM = A[l, J].
[End of inner Step 3 loop.
Return.

Set PROD := 1. [This is analogous to setting SUM =0.]
Repeat for K=1 to N:
Set PROD := PROD * A[K, K],
{End of loop.]
Return.,

97

4,11 Suppose multidimensional arrays A and B are declared using

A(—2:2,2:22) and B(1:8,-5:5, —10:5)

(a) Find the length of each dimension and the number of elements in A and B.
(b) Consider the element B[3, 3, 3] in B. Find the effective indices E,, E,, E, and the address

(a)

)

of the element, assuming Base(B) = 400 and there are w = 4 words per memory location.
The length of a dimension is obtained by:
Length = upper bound — lower bound + 1
Hence the lengths L, of the dimensions of A are:
L,=2-(-2)+1=5 and L,=22-2+1=21

Accordingly, A has 5-21 =105 elements. The lengths L, of the dimensions of B are:

L,=8-1+1=8 L,=5-(-5)+1=11 L,=5-(-10)+1=16
Therefore, B has 8-11: 16 = 1408 elements.

The effective index E, is obtained from E, = k, — LB, where k, is the given index and LB is the lower
bound. Hence

E,=3-1=2 E,=3-(-5)=8 E,=3-(-10)=13

The address depends on whether the programming language stores B in row-major order or
column-major order. Assuming B is stored in column-major order, we use Eq. (4.8):

El,=13-11=143 E\L,+E,=143+8=151
(E\L,+ E;)L, =151-8=1208 (E.,L,+ E,)L, + E,; =1208 +2=1210

Therefore, LOC(B(3, 3, 3]) = 400 + 4(1210) = 400 + 4840 = 5240

98

Suppose multidimensional arrays A and B are declared using
A(—2:2,2:22) and B(1:8, =5:5, —10:5)
(a) Find the length of each dimension and the number of elements in A and B.

(b) Consider the element B[3, 3, 3] in B. Find the effective indices E,, E,, E; and the address
of the element, assuming Base(B) = 400 and there are w = 4 words per memory location.

99

(a) The length of a dimension is obtained by:

(b)

Length = upper bound — lower bound +1
Hence the lengths L, of the dimensions of A are:
L,=2-(-2)+1=5 and L,=22-2+1=21
Accordingly, A has 5-21 =105 elements. The lengths L, of the dimensions of B are:
L,=8-1+1=8 L,=5§-(-5)+1=1l L,=5-(-10)+1=16
Therefore, B has 8- 1116 = 1408 elements,

The effective index E, is obtained from E, = k, — LB, where k, is the given index and LB is the lower
bound. Hence

E,=3-1=2 E,=3-(-5)=8 E,=3-(-10)=13

The address depends on whether the programming language stores B in row-major order or
column-major order. Assuming B is stored in column-major order, we use Eq. (4.8):

EL,=13-11=143 E,L,+E.=143+8=151
(E\L,+ E;)L,=151-8=1208 (E,L,+ E,)L, + E, =1208 +2=1210

Therefore, LOC(B(3, 3, 3]) = 400 + 4(1210) = 400 + 4840 = 5240

100

Consider the following multidimensional arrays:

X(=35:5, 3:33) ¥(3:10, 1:15, 10:20)

(@) Find the length of cach dimension and the number of clements in X and Y.

(b) Suppose Base(Y) =400 and there are w = 4 words per memory location. Find the effective indices
E,, E,, E, and the address of Y[5, 10, 15] assuming (i) Y is stored in row-major order and (ii) Y is
stored in column-major order,

101

4.13. Matrices

Matrices
1. Algebra of Matrices
2. Example 4.23

3. Algorithm 4.7 (Matrix Multiplication)
4. Example 4.24

102

Matrices Multiplication Algorithm

» Input two matrixes, Output Output matrix C.
» Matrix-Multiply(A, B)

1. iIf columns [A] # rows [B]

2. then error "'incompatible dimensions™

3. else

4. for 1 =1 to rows [A]

5. forj=1tocolumns [B]

6. CIi1, J] =0

7. for k =1 to columns [A]

8. Cli, j1=CIi, j1+Ali, K]*BIk, j]
9. returnC

103

» Complexity O(n"3)

Algorithm Description

» To multiply two matrixes sufficient and necessary
condition 1s "number of columns 1n matrix A = number of
rows In matrix B".

» Loop for each row In matrix A.

» Loop for each columns in matrix B and initialize output
matrix C to O.

» This loop will run for each rows of matrix A.

» Loop for each columns in matrix A.

» Multiply A[1,Kk] to Blk,j] and add this value to CJi,j]
» Return output matrix C.

104

