
By

Dr. Reda Elbarougy

رضا الباروجى/ د

Lecturer of computer sciences

In Mathematics Department

Faculty of Science

Damietta University

رقم المحاضرة

2

التاريخ رقم المحاضرة

02-2020 1المحاضرة

03-03-2020 2المحاضرة

10-03-2020 3المحاضرة

17-03-2020 4المحاضرة

5المحاضرة

6المحاضرة

7المحاضرة

8المحاضرة

9المحاضرة

10المحاضرة

11المحاضرة

Arrays, Records and Pointers

3

1. Introduction

2. Linear Arrays and Some Examples

3. Representation of Linear Arrays in Memory

4. Traversing Linear Arrays

1. Algorithm 4.1: traversing a linear array

2. Algorithm 4.1’: traversing a linear array

5. Inserting and Deleting

1. Algorithm 4.2: Inserting into a linear array

2. Algorithm 4.3: Deleting from a linear array

6. Sorting; Bubble Sort
1. Algorithm 4.4: Bubble sort

2. Complexity of the bubble sort algorithm

Chapter 4: Arrays, Records and Pointers

4

7. Searching: Linear search
1. Algorithm 4.5: linear search

2. Complexity of the linear search algorithm

8. Searching: Binary Search
1. Algorithm 4.6: Binary search

2. Complexity of the binary search algorithm

3. Limitation of the Binary Search Algorithm

Chapter 4: Arrays, Records and Pointers

5

Data structure can be classified in to major types:

Linear Data Structure (Chapter 4, 5 and 6)

Non-linear Data Structure (Chapter 7)

Categories of Data Structure

6

A data structure is said to be linear if its elements

form a sequence, or, in other words, a linear list.

There are basically two ways of representing such

linear structure in memory.

a) One way is to have the linear relationships
between the elements represented by means of
sequential memory location. These linear
structures are called arrays.

b) The other way is to have the linear relationship
between the elements represented by means of
pointers or links. These linear structures are called

linked lists.

Linear Data Structure:

7

The common examples of linear data structure are

Arrays

Queues

Stacks

Linked lists

Common examples of linear data structure

8

Non-linear Data Structure

9

This structure is mainly used to represent data

containing a hierarchical relationship between

elements.

–e.g. graphs, family trees and table of contents.

Operations on linear structure

10

Operation on linear structure (array or linked list):

a) Traversing: Processing each element in the list.

b) Searching: Finding the location of a particular

element in with a given value or the record with a

given key.

c) Insertion: Adding a new element to the list.

d) Deletion: Removing an element from a list.

e) Sorting: Arranging the elements in some type of

order (Ascending / Descending).

f) Merging: Combining two lists into a single list.

Linear Arrays

11

• The simplest type of data structure is a linear (or one

dimensional) array.

• A linear array is a list of a finite number n of similar

data elements such that:

a) The elements of the array are referenced

respectively by an index set consisting of n

consecutive numbers, usually 1, 2, 3 n.

b) The elements of the array are stored respectively in

a successive memory locations.

• if we choose the name A for the array, then the

elements of A are denoted by subscript notation

Arrays

12

Linear Arrays

13

Advantage :-

– Structure is simple .

– Arrays are easy to traverse ,search & sort.

Disadvantages:-

– Insertion & deletion is difficult .It involves data

movement.

Linear Arrays

14

If we choose the name A for the array, then the

elements of A are denoted by subscript notation.

The number k in A[k] is called subscript or index

Linear Arrays

15

N is called the length

Length=UB-LB+1

UB is largest index, called upper bound

LB is smallest index, called lower bound.

Note that Length=UB when LB=1

Linear Arrays: Example 4.1.

16

Example 4.1 (a): Let data is a six element linear array

of integer such that:

DATA [1] = 247 DATA [2] = 56 DATA [3] =429

DATA [4] =135 DATA [5] = 87 DATA [6] =156

• DATA 247, 56, 429, 135, 87

• This type of array data can be pictured in the form:

Linear Arrays: Example 4.1.

17

Example 4.1 (b): AUTO to record the number of

automobiles sold each year from 1932 to 1984

AUTO[k]=number of automobiles sold in the year k

LB=1932

UB=1984

Length=UB-LB+1=1984-1930+1=55

Index are integers from 1932 to 1984

Linear Arrays: Example 4.1.

18

Linear Arrays

19

Each programing language has its own rules for

dealing arrays, each such declaration must give,

implicitly or explicitly, three items of information's:

1.The name of the array

2.The data type of the array and

3.The index set of the array

• Declaration of the Arrays: Any array declaration

contains:

1. the array name,

2. the element type and

3. the array size.

Linear Arrays

20

• Declaration of the Arrays: Any array declaration

contains: the array name, the element type and the

array size.

• Initialization of an array is the process of assigning

initial values. Typically declaration and initialization

are combined.

Example 4.2.

21

Allocate Memory Space

22

• Fortran and Pascal, allocate memory space for arrays

statically the size is fixed during the program execution.

• Some programing language allow one to read an integer n

and then declare an array with n elements, such

programing are said to allocate memory dynamically

3. Representation of Linear Arrays in Memory

23

Let LA be a linear array in the memory of a computer.

Recall that the memory of computer is simply a sequence

of address location as in figure below;

3. Representation of Linear Arrays in Memory

24

LOC(LA[K])=address of the element LA[K] of the array LA

Computer only keep the addresses of the first element

Base(LA) of the array.

Base(LA) is called the base address

The address of any element is calculated by

LOC(LA[K])=Base(LA)+W(K-LB)

Where W is number of words per memory cell

Example 3:

25

Consider the array also AUTO in example 2 which record the

number of automobile sold each year from 1932 through 1984.

Suppose AUTO appear in memory as picture in fig. (2) i.e base

AUTO = 200 and w=4 word per memory cell for AUTO.

Find the address of the element which store the info about

sale in year 1965?

Example 3:

26

• LOC (AUTO [1932]) = 200

• LOC (AUTO [1933]) = 204

• LOC (AUTO [1934]) = 208

• The address of the array element for the year K = 1965

can be obtained by using the equation of the formula.

LOC (LA [K]) = Base (LA) + w(K – Lower bound)

LOC (LA [1965]) = 200+4(1965 – 1932)

=200+4(33) = 200+132 = 332

BASE (LA) = BASE (AUTO) = 200

where w=4, K=1965, LB= 1932

LOC (LA [1965]) = 332.

Example 3:

27

Example 3:

28

Example 3:

29

Problem

30

Traversing Linear Array

31

Algorithm 4.1: Traversing Linear Array

32

Algorithm 4.1’: Traversing Linear Array

33

Here LA = linear array with lower bound (LB) with upper

bound (UB). This algorithm transverse LA applying an

operation PROCESS to each element of LA.

Example 4.4

34

Consider example 4.1(b),

(a) find the number NUM of year during which more than

300 automobile were sold.

Solution: using the algorithm

1) Set NUM := 0 [initialize counter]

2) Repeat for K = 1932 to 1984

If Auto [K] ˃300; then set NUM: = NUM+1

End of loop

3) Loop.

Example 4.4

35

(b) Print each year and the number of automobiles sold in

that year.

Solution: using the algorithm

1) Repeat for K = 1932 to 1984:

Write: K, Auto [K] .

End of loop

2) Loop.

Example

36

Example

37

Problem

38

Inserting and Deleting

39

Inserting and Deleting

40

• Insert at the end can easily done

• Inserting in the middle  half of the elements move

downward  increasing subscript

• Deleting from the end of a Linear Array can easily done

• Delating from the middle half of the data must move

upward  decreasing the subscript

Inserting and Deleting

41

Inserting and Deleting

42

Inserting and Deleting

43

Add Ford then Add Taylor then Remove Davis

Inserting into a Linear Array

44

(Algorithm:(Inserting into a linear Array)

INSERT (LA, N, K, ITEM).

Here LA is a linear array with N elements and K is a

positive integer such that K ≤N. this algorithm inserts an

element ITEM into the Kth position in LA.

Deleting from Linear Array

45

(Deleting from a Linear Array) DELETE (LA, N, K, ITEM)

Here LA is a Linear Array with N element and K is positive

integer such that K≤ N.

This algorithm deletes the kth element from LA

1.Set ITEM := LA[K]

2.Repeat for J = K to N-1

[Move Jth element upward.] Set LA [J]:= LA [J+1]

[End of loop]

3. [Reset the number N of elements in LA] Set N:= N-1

4.Exit.

Deleting from Linear Array

46

Sorting in Linear Array:

47

Sorting an array is the ordering the array elements in

ascending (increasing from min to max)

Or descending (decreasing – from max to min) order.

• Example:

• {2 1 5 7 4 3}  {1, 2, 3, 4, 5,7} ascending order

• {2 1 5 7 4 3}  {7,5, 4, 3, 2, 1} descending order

Bubble sort

48

• The technique we use is called “Bubble Sort”

• The bigger value gradually bubbles their way up to the

top of array like air bubble rising in water,

• While the small values sink to the bottom of array.

• This technique is to make several passes through the

array.

• On each pass, successive pairs of elements are

compared.

• If a pair is in increasing order (or the values are

identical), we leave the values as they are. If a pair is in

decreasing order, their values are swapped in the

array.

Example 4.2.

49

Example. Sort {5, 1, 12, -5, 16} using bubble sort.

Sorting; Bubble sort: Algorithm 4.4

50

Example

51

Example. Using the bubble sort algorithm, Algorithm

4.4, find the number C of comparisons and the number

D of interchanges which alphabetize the n =6 letters in

PEOPLE.

Example

52

Example. Using the bubble sort algorithm, Algorithm 4.4, find

the number C of comparisons and the number D of

interchanges which alphabetize the n =6 letters in PEOPLE.

Bubble Sort Time Complexity

53

• Best-Case Time Complexity

– The scenario under which the algorithm will

do the least amount of work (finish the

fastest)

• Worst-Case Time Complexity

– The scenario under which the algorithm will

do the largest amount of work (finish the

slowest).

Bubble Sort Time Complexity

54

• Best-Case Time Complexity

– Array is already sorted

– Need 1 iteration with (N-1) comparisons

• Worst-Case Time Complexity

– Need N-1 iterations

– (N-1) + (N-2) + (N-3) + …. + (1) = (N-1)* N / 2

Called Linear Time

O(N)

Order-of-N

Called Quadratic Time

O(N2)

Order-of-N-square

Searching in Linear Array:

55

• The process of finding a particular element of an array

is called Searching”.

• If the item is not present in the array, then the search is

unsuccessful.

• There are two types of search (Linear search and

Binary Search)

Linear Search:

56

The linear search compares each element of the array

with the search key until the search key is found.

To determine that a value is not in the array, the

program must compare the search key to every element

in the array.

It is also called “Sequential Search” because it traverses

the data sequentially to locate the element.

Linear Array:

57

Linear search Complexity

58

• Worst-Case Time Complexity

– Need n+1 iterations

– F(n)=n+1

• Average-Case Time Complexity

– F(n)=(n+1)/2

Linear search Complexity

59

Linear search Complexity

60

4.9. Multidimensional Arrays

1. Two-Dimensional Arrays

2. Example 4.11

3. Representation of Two-Dimensional Arrays in Memory

4. Example 4.12

Chapter 4: Arrays, Records and Pointers

61

Binary search

62

63

Sequential search

• sequential search: Locates a target value in an array / list by
examining each element from start to finish.

– How many elements will it need to examine?

– Example: Searching the array below for the value 42:

– Notice that the array is sorted. Could we take advantage of this?

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

i

64

Binary search

• binary search: Locates a target value in a sorted array / list
by successively eliminating half of the array from consideration.

– How many elements will it need to examine?

– Example: Searching the array below for the value 42:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

min mid max

65

Runtime Efficiency

• How much better is binary search than sequential search?

• efficiency: A measure of the use of computing resources by code.

– can be relative to speed (time), memory (space), etc.

– most commonly refers to run time

• Assume the following:

– Any single C# statement takes the same amount of time to run.

– A method call's runtime is measured by the total of the
statements inside the method's body.

– A loop's runtime, if the loop repeats N times, is N times the
runtime of the statements in its body.

66

Sequential search

• What is its complexity class?

public int indexOf(int value) {

for (int i = 0; i < size; i++) {

if (elementData[i] == value) {

return i;

}

}

return -1; // not found

}

• On average, "only" N/2 elements are visited

– 1/2 is a constant that can be ignored  O(N)

N

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

67

Binary search

• binary search successively eliminates half of the elements.

– Algorithm: Examine the middle element of the array.

• If it is too big, eliminate the right half of the array and repeat.

• If it is too small, eliminate the left half of the array and repeat.

• Else it is the value we're searching for, so stop.

– Which indexes does the algorithm examine to find value 42?

– What is the runtime complexity class of binary search?

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

min mid max

68

Binary search runtime

• For an array of size N, it eliminates ½ until 1 element remains.

N, N/2, N/4, N/8, ..., 4, 2, 1

– How many divisions does it take?

• Think of it from the other direction:

– How many times do I have to multiply by 2 to reach N?

1, 2, 4, 8, ..., N/4, N/2, N

– Call this number of multiplications "x".

2x = N

x = log2 N

• Binary search is in the logarithmic complexity class.

69

a c d f g h j l m o p r s u v x z

binary search for the letter ‘j’

center element

search interval

Algorithm Examples

70

a c d f g h j l m o p r s u v x z

binary search for the letter ‘j’

center element

search interval

Algorithm Examples

71

a c d f g h j l m o p r s u v x z

binary search for the letter ‘j’

center element

search interval

Algorithm Examples

72

a c d f g h j l m o p r s u v x z

binary search for the letter ‘j’

center element

search interval

Algorithm Examples

73

a c d f g h j l m o p r s u v x z

binary search for the letter ‘j’

center element

search interval

found !

Algorithm Examples

Binary search

74

Complexity of the Binary search algorithm

75

• Worst-Case Time Complexity

– F(n)=log(n)+1

Example

76

Limitations of the binary Search algorithm

77

Multidimensional Arrays

1. Two-Dimensional Arrays

2. Example 4.11

3. Representation of Two-Dimensional Arrays in Memory

4. Example 4.12

4.9 Multidimensional Arrays

78

Linear array is one dimensional array,

use one subscript such as  A[i]

Two dimensional array

uses two subscripts such as  A[i,j]

Multidimensional array

uses 3-7 subscripts such as  A[i,j,k].

Multi-dimensional Arrays

79

Two dimensional Array:

A is a collection of mxn data elements such that

each element is specified by a pair of integers

(such as J, K) called subscripts with the property

that 1≤ J≤ M and 1≤ K≤n

The element of A with first subscript J and second

subscript K will be denoted by A [J,K].

Two dimensional arrays are sometimes called

(matrices) matrix array.

Two Dimensional Arrays

80

 It is also called matrices in mathematics and table

in business applications.

Size is m.n

 Length=upper bound –lower bound+1

 LB of Regular arrays=1

Dimensions of INTEGER NUMB(2:5,-3:1)

 length of first dimension =?

 length of second dimension= ?

The NUMB dimension=?

Two Dimensional Arrays

81

Example 4.11

82

Example 4.11

Class of 25 students is given 4 tests.

Store the data in a 25×4 matrix SCORE

SCORE[K,L] contains the Kth student’s score on the

Lth Test.

M×N rectangular matrix will be represented in memory

by a block of m.n sequential memory locations.

Programing language will store the array A either in

two ways:

1.Column Major Order:

2. Row Major Order

Representation depends upon the program not user

Representation of Two-Dimensional Arrays in Memory

83

Representation of Two-Dimensional Arrays in Memory

84
(a) Column-major order

(b) Row-major order

A A SubscriptSubscript

Representation of Two-Dimensional Arrays in Memory

85

Representation of Two-Dimensional Arrays in Memory

86

 Linear array do not keep track of the address LOC(A[k])

of every element A[k],

 but does keep the track of Base(A), the address of first

element.

 formula LOC(A[k] = base (A) + w(k-1)

 Same situation holds for two-dimensional mxn array A.

Computer does not keep the Address of all elements in

the array

Computer keeps track of BASE(A) which is the address

of the first element A[1,1] of A

Computer computes the address LOC(A[J,K]) of the

element A[J,K] using two different formulas.

Representation of Two-Dimensional Arrays in Memory

87

LOC (A [J, K]) = Base (A) + w [M (K-Col_LB) + (J-Row_LB)]

LOC (A [J, K]) = Base (A) + w [M (K-1) + (J-1)]

 LOC (A [J, K]):is the location of the element in the Jth

row and Kth column.

 Base (A) : is the base address of the array A.

 w :is the number of bytes required to store single

element of the array A.

 M :is the total number of rows in the array.

 J :is the row number of the element.

 K :is the column number of the element.

In case of Column Major Order:

88

LOC (A [J, K]) = Base (A) + w [N (J-Row_LB) + (K-Col_LB)]

LOC (A [J, K]) = Base (A) + w [N (J-1) + (K-1)]

 LOC (A [J, K]):is the location of the element in the Jth

row and Kth column.

 Base (A) : is the base address of the array A.

 w :is the number of bytes required to store single

element of the array A.

 N : is the total number of columns in the array.

 J :is the row number of the element.

 K :is the column number of the element.

In case of Row Major Order:

89

Example 4.12

90

Consider the 3×4 array A

Suppose Base(A)=100 and there are w=4 words per

memory cell,

A. suppose the programing language stores two-

dimensional arrays using row-major order. Find the

location of the element A[2,3]

B. suppose the programing language stores two-

dimensional arrays using column-major order. Find

the location of the element A[2,3]

Example 4.12

91

The formula for LOC (A [J, K]) is

LOC (A [J, K]) = Base (A) + w [N (J-Row_LB) + (K-Col_LB)]

Row_LB=1, K-Col_LB=1

 LOC (A [J, K]) = Base (A) + w [N (J-1) + (K-1)]

LOC (A [2, 3]) = 100 + 4 [4 (2-1) + (3-1)]

= 100 + 4 [4 (1) + 2]

= 100 + 4 [4 + 2]

=124

Example 4.12 : Column-major order

92

The formula for LOC (A [J, K]) is

LOC (A [J, K]) = Base (A) + w [M (K-1) + (J-1)]

LOC (A [2, 3]) = 100 + 4 [3 (3-1) + (2-1)]

= 100 + 4 [3 (2) + 1]

= 100 + 4 [6+ 1]

=128

Logical and Physical view

93

The difference between the logical and physical view

of data

 Logical views of 3×4 matrix array A

 Is rectangular array of data where A[K,J] is an element

appears in row J and column K.

Physical view is the representation in the memory as

a linear collection of memory cells

E.g. certain data may be viewed logically as trees or

graphs although physically the data will be stored

linearly in memory cells

Multi-dimensional arrays

94

Multi-dimensional arrays

95

Example

96

Example

97

Example

98

Example

99

Example

100

Problem

101

Matrices

1. Algebra of Matrices

2. Example 4.23

3. Algorithm 4.7 (Matrix Multiplication)

4. Example 4.24

4.13. Matrices

102

Matrices Multiplication Algorithm

103

 Input two matrixes, Output Output matrix C.

Matrix-Multiply(A, B)

1. if columns [A] ≠ rows [B]

2. then error "incompatible dimensions"

3. else

4. for i =1 to rows [A]

5. for j = 1 to columns [B]

6. C[i, j] =0

7. for k = 1 to columns [A]

8. C[i, j]=C[i, j]+A[i, k]*B[k, j]

9. return C

Complexity O(n^3)

Algorithm Description

104

To multiply two matrixes sufficient and necessary

condition is "number of columns in matrix A = number of

rows in matrix B".

Loop for each row in matrix A.

Loop for each columns in matrix B and initialize output

matrix C to 0.

This loop will run for each rows of matrix A.

Loop for each columns in matrix A.

Multiply A[i,k] to B[k,j] and add this value to C[i,j]

Return output matrix C.

الرابعةتم الإنتهاء من المحاضرة

