Data Structure

By Dr. Reda Elbarougy د/ رضا الباروجی Lecturer of computer sciences In Mathematics Department Faculty of Science Damietta University

رقم المحاضرة

التاريخ	رقم المحاضرة	
2020-02	المحاضرة 1	
2020-03-03	المحاضرة 2	
2020-03-10	المحاضرة 3	
2020-03-17	المحاضرة 4	
	المحاضرة 5	
	المحاضرة 6	
	المحاضرة 7	
	المحاضرة 8	
	المحاضرة 9	
	المحاضرة 10	
	المحاضرة 11	·

Arrays, Records and Pointers

Chapter 4: Arrays, Records and Pointers

1. Introduction

- 2. Linear Arrays and Some Examples
- 3. Representation of Linear Arrays in Memory
- 4. Traversing Linear Arrays
 - 1. Algorithm 4.1: traversing a linear array
 - 2. Algorithm 4.1': traversing a linear array
- 5. Inserting and Deleting
 - 1. Algorithm 4.2: Inserting into a linear array
 - 2. Algorithm 4.3: Deleting from a linear array
- 6. Sorting; Bubble Sort
 - 1. Algorithm 4.4: Bubble sort
 - 2. Complexity of the bubble sort algorithm

Chapter 4: Arrays, Records and Pointers

7. Searching: Linear search

- 1. Algorithm 4.5: linear search
- 2. Complexity of the linear search algorithm

8. Searching: Binary Search

- 1. Algorithm 4.6: Binary search
- 2. Complexity of the binary search algorithm
- 3. Limitation of the Binary Search Algorithm

Categories of Data Structure

Data structure can be classified in to major types:

- Linear Data Structure (Chapter 4, 5 and 6)
- Non-linear Data Structure (Chapter 7)

Linear Data Structure:

A data structure is said to be **linear** if its elements form a sequence, or, in other words, a linear list. There are basically two ways of representing such linear structure in memory.

- *a) One way is to have the linear relationships between the elements represented* by means of sequential memory location. These linear structures are called **arrays.**
- *b) The other way is to have the linear relationship between the elements represented by means of pointers or links.* These linear structures are called **linked lists.**

Common examples of linear data structure

The common examples of linear data structure are

- > Arrays
- Queues
- Stacks
- Linked lists

Non-linear Data Structure

This structure is mainly used to represent data containing a hierarchical relationship between elements.

-e.g. graphs, family trees and table of contents.

Operations on linear structure

Operation on linear structure (array or linked list):

- a) Traversing: Processing each element in the list.
- b) Searching: Finding the location of a particular element in with a given value or the record with a given key.
- c) Insertion: Adding a new element to the list.
- d) Deletion: Removing an element from a list.
- e) Sorting: Arranging the elements in some type of order (Ascending / Descending).
- f) Merging: Combining two lists into a single list.

- The simplest type of data structure is a linear (or one dimensional) array.
- A linear array is a list of a finite number n of similar data elements such that:
- a) The elements of the array are referenced respectively by an index set consisting of n consecutive numbers, usually 1, 2, 3 n.
- b) The elements of the array are stored respectively in a successive memory locations.
- if we choose the name A for the array, then the elements of A are denoted by subscript notation

Arrays

Advantage :-

- Structure is simple.
- Arrays are easy to traverse ,search & sort.

Disadvantages:-

Insertion & deletion is difficult .It involves data movement.

If we choose the name A for the array, then the elements of A are denoted by subscript notation. The number k in A[k] is called subscript or index

 $A_1, A_2, A_3, \dots, A_n$ or by the parenthesis notation $A(1), A(2), A(3), \dots, A(n)$ or by the bracket notation $A[1], A[2], A[3], \dots, A[n]$

Example:

A linear array A[8] consisting of numbers is pictured in following figure.

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ A[0] & A[1] & A[2] & A[3] & A[4] & A[5] & A[6] & A[7] \\ int & A[8] = \{1, 2, 3, 4, 5, 6, 7, 8\}; \end{bmatrix}$$

N is called the length Length=UB-LB+1 UB is largest index, called upper bound LB is smallest index, called lower bound. Note that Length=UB when LB=1

Linear Arrays: Example 4.1.

- **Example 4.1 (a):** Let data is a six element linear array of integer such that:
- DATA [1] = 247 DATA [2] = 56 DATA [3] =429
- DATA [4] =135 DATA [5] = 87 DATA [6] =156
- DATA 247, 56, 429, 135, 87
- This type of array data can be pictured in the form:

DATA						
OR	247	56	429	135	87	156

Linear Arrays: Example 4.1.

- Example 4.1 (b): AUTO to record the number of automobiles sold each year from 1932 to 1984 AUTO[k]=number of automobiles sold in the year k LB=1932
- UB=1984
- Length=UB-LB+1=1984-1930+1=55
- Index are integers from 1932 to 1984

Linear Arrays: Example 4.1.

```
Defining Arrays in C*/
#include <stdio.h>
main()
```

```
int a[10]; //1
for(int i = 0;i<10;i++)</pre>
```

```
a[i]=i;
```

```
printaray(a);
```

```
void printaray(int a[])
```

```
for(int i = 0;i<10;i++)
```

printf("Value in the array %d\n",a[i]);

Each programing language has its own rules for dealing arrays, each such declaration must give, implicitly or explicitly, three items of information's:

1. The name of the array

2. The data type of the array and

3. The index set of the array

- Declaration of the Arrays: Any array declaration contains:
 - 1. the array name,
 - 2. the element type and
 - 3. the array size.

 Declaration of the Arrays: Any array declaration contains: the array name, the element type and the array size.

int a[20], b[3],c[7]; float f[5], c[2]; char m[4], n[20];

 Initialization of an array is the process of assigning initial values. Typically declaration and initialization are combined.

Examples:

Example 4.2.

(a)	Suppose DATA is a 6-element l programming languages declar	inear array containing real values. Various e such an array as follows:		
	FORTRAN: PL/1: Pascal:	REAL DATA(6) DECLARE DATA(6) FLOAT; VAR DATA: ARRAY[1 6] OF REAL		
 We will declare such an array ,when necessary, by writing DATA(6). (will usually indicate the data type, so it will not be explicitly declar. (b) Consider the integer array AUTO with lower bound LB = 1932 and up UB = 1984. Various programming languages declare such an array as 				
	FORTRAN 77 PL/1: Pascal:	INTEGER AUTO(1932: 1984) . DECLARE AUTO(1932: 1984) FIXED; VAR AUTO: ARRAY[1932 1984] of INTEGER		
	We will declare such an array b	y writing AUTO(1932:1984).		

Allocate Memory Space

- Fortran and Pascal, allocate memory space for arrays statically the size is fixed during the program execution.
- Some programing language allow one to read an integer n and then declare an array with n elements, such programing are said to allocate memory dynamically

3. Representation of Linear Arrays in Memory

Let LA be a linear array in the memory of a computer. Recall that the memory of computer is simply a sequence of address location as in figure below;

LOC(LA[K])=address of the element LA[K] of the array LA

- Computer only keep the addresses of the first element Base(LA) of the array.
- Base(LA) is called the base address

The address of any element is calculated by LOC(LA[K])=Base(LA)+W(K-LB)

Where W is number of words per memory cell

Consider the array also AUTO in example 2 which record the number of automobile sold each year from 1932 through 1984. Suppose AUTO appear in memory as picture in fig. (2) i.e base AUTO = 200 and w=4 word per memory cell for AUTO.

Find the address of the element which store the info about sale in year 1965? 200

- LOC (AUTO [1932]) = 200
- LOC (AUTO [1933]) = 204
- LOC (AUTO [1934]) = 208
- The address of the array element for the year K = 1965 can be obtained by using the equation of the formula.

LOC (LA [K]) = Base (LA) + w(K – Lower bound)

LOC (LA [1965]) =
$$200+4(1965 - 1932)$$

= $200+4(33) = 200+132 = 332$
BASE (LA) = BASE (AUTO) = 200
where w=4, K=1965, LB= 1932
 \rightarrow LOC (LA [1965]) = 332 .

Consider the linear arrays AAA(5:50), BBB(-5:10) and CCC(18).

- (a) Find the number of elements in each array.
- (b) Suppose Base(AAA) = 300 and w = 4 words per memory cell for AAA. Find the address of AAA[15], AAA[35] and AAA[55].

Consider the linear arrays AAA(5:50), BBB(-5:10) and CCC(18).

- (a) Find the number of elements in each array.
- (a) The number of elements is equal to the length; hence use the formula

Length = UB - LB + 1

Accordingly,

Length(AAA) = 50 - 5 + 1 = 46Length(BBB) = 10 - (-5) + 1 = 16Length(CCC) = 18 - 1 + 1 = 18

Note that Length(CCC) = UB, since LB = 1.

Consider the linear arrays AAA(5:50), BBB(-5:10) and CCC(18).

(b) Suppose Base(AAA) = 300 and w = 4 words per memory cell for AAA. Find the address of AAA[15], AAA[35] and AAA[55].

(b) Use the formula

Hence:

LOC(AAA[K]) = Base(AAA) + w(K - LB)

LOC(AAA[15]) = 300 + 4(15 - 5) = 340LOC(AAA[35]) = 300 + 4(35 - 5) = 420

AAA[55] is not an element of AAA, since 55 exceeds UB = 50.

Problem

Consider the linear arrays XXX(-10:10), YYY(1935:1985), ZZZ(35). (a) Find the number of elements in each array. (b) Suppose Base(YYY) = 400 and w = 4 words per memory cell for YYY. Find the address of YYY[1942], YYY[1977] and YYY[1988].

Traversing Linear Array

Algorithm 4.1: Traversing Linear Array

Algorithm 4.1': Traversing Linear Array

Here LA = linear array with lower bound (LB) with upper bound (UB). This algorithm transverse LA applying an operation PROCESS to each element of LA.

> Transversing a linear Array 1.Repeat for K= LB+UB 2.Apply PROCESS to LA[K] [End of loop] 3.Exit.

Example 4.4

Consider example 4.1(b),

(a) find the number NUM of year during which more than 300 automobile were sold.

Solution: using the algorithm

- 1) Set NUM := 0 [initialize counter]
- 2) Repeat for K = 1932 to 1984
 - If Auto [K] >300; then set NUM: = NUM+1

End of loop

3) Loop.

Example 4.4

(b) Print each year and the number of automobiles sold in that year.

Solution: using the algorithm

- 1) Repeat for K = 1932 to 1984:
 - Write: K, Auto [K].
- End of loop
- 2) Loop.

Example

Suppose a company keeps a linear array YEAR(1920:1970) such that YEAR[K] contains the number of employees born in year K. Write a module for each of the following tasks:

- (a) To print each of the years in which no employee was born.
- (b) To find the number NNN of years in which no employee was born.
- (c) To find the number N50 of employees who will be at least 50 years old at the end of the year. (Assume 1984 is the current year.)
- (d) To find the number NL of employees who will be at least L years old at the end of the year. (Assume 1984 is the current year.)

Each module traverses the array.
Example

Each module traverses the array.

- (a) 1. Repeat for K = 1920 to 1970: If YEAR[K] = 0, then: Write: K. [End of loop.]
 - 2. Return.
- (b) 1. Set NNN := 0.
 - Repeat for K = 1920 to 1970: If YEAR[K] = 0, then: Set NNN := NNN + 1. [End of loop.]
 - 3. Return.
- (c) We want the number of employees born in 1934 or earlier.
 - 1. Set N50 := 0.
 - Repeat for K = 1920 to 1934: Set N50 := N50 + YEAR[K]. [End of loop.]
 - 3. Return.
- (d) We want the number of employees born in year 1984 L or earlier.
 - Set NL := 0 and LLL := 1984 L.
 - Repeat for K = 1920 to LLL: Set NL := NL + YEAR[K]. [End of loop.]
 - 3. Return.

Problem

An array A contains 25 positive integers. Write a module which

- (a) Finds all pairs of elements whose sum is 25
- (b) Finds the number EVNUM of elements of A which are even, and the number ODNUM of elements of A which are odd

Suppose A is a linear array with n numeric values. Write a procedure

MEAN(A, N, AVE)

which finds the average AVE of the values in A. The arithmetic mean or average \overline{x} of the values x_1, x_2, \ldots, x_n is defined by

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Each student in a class of 30 students takes 6 tests in which scores range between 0 and 100. Suppose the test scores are stored in a 30×6 array TEST. Write a module which

- (a) Finds the average grade for each test
- (b) Finds the final grade for each student where the final grade is the average of the student's five highest test scores
- (c) Finds the number NUM of students who have failed, i.e., whose final grade is less than 60
- (d) Finds the average of the final grades

- Insert at the end can easily done
- Inserting in the middle → half of the elements move downward → increasing subscript
- Deleting from the end of a Linear Array can easily done
- Delating from the middle half of the data must move upward → decreasing the subscript

No data item can be deleted from an empty array

Insertion

1	Brown	1	Brown
2	Davis	2	Davis
3	Johnson	3	Johnson
4	Smith	4	Smith
5	Wagner	5	Wagner
6		6	Ford
7		7	
8		8	

Insert Ford at the End of Array

Add Ford then Add Taylor then Remove Davis

Inserting into a Linear Array

(Algorithm: (Inserting into a linear Array) INSERT (LA, N, K, ITEM).

Here LA is a linear array with N elements and K is a positive integer such that $K \leq N$. this algorithm inserts an element ITEM into the Kth position in LA.

Algorithm 4.2: (Inserting into a Linear Array) INSERT (LA, N, K, ITEM) Here LA is a linear array with N elements and K is a positive integer such that

- $K \leq N$. This algorithm inserts an element ITEM into the Kth position in LA.
- [Initialize counter.] Set J := N.
- 2. Repeat Steps 3 and 4 while $J \ge K$.
- [Move Jth element downward.] Set LA[J + 1] := LA[J].
- [Decrease counter.] Set J := J 1.
 [End of Step 2 loop.]
- 5. [Insert element.] Set LA[K] := ITEM.
- 6. [Reset N.] Set N := N + 1.
- 7. Exit.

Deleting from Linear Array

(Deleting from a Linear Array) DELETE (LA, N, K, ITEM) Here LA is a Linear Array with N element and K is positive integer such that $K \le N$.

This algorithm deletes the kth element from LA

- 1.Set ITEM := LA[K]
- 2.Repeat for J = K to N-1
 - [Move Jth element upward.] Set LA [J]:= LA [J+1] [End of loop]
- 3. [Reset the number N of elements in LA] Set N:= N-14.Exit.

Deleting from Linear Array

Algorithm 4.3: (Deleting from a Linear Array) DELETE(LA, N, K, ITEM) Here LA is a linear array with N elements and K is a positive integer such that $K \le N$. This algorithm deletes the Kth element from LA.

- 1. Set ITEM := LA[K].
- 2. Repeat for J = K to N 1:

[Move J + 1st element upward.] Set LA[J] := LA[J + 1]. [End of loop.]

3. [Reset the number N of elements in LA.] Set N = N - 1.

4. Exit.

Sorting in Linear Array:

Sorting an array is the ordering the array elements in ascending (increasing from min to max)

Or descending (decreasing – from max to min) order.

- Example:
- {2 1 5 7 4 3} → {1, 2, 3, 4, 5,7} ascending order
- $\{2\ 1\ 5\ 7\ 4\ 3\} \rightarrow \{7,5,\ 4,\ 3,\ 2,\ 1\}$ descending order

Bubble sort

- The technique we use is called "Bubble Sort"→
- The bigger value gradually bubbles their way up to the top of array like air bubble rising in water,
- While the small values sink to the bottom of array.
- This technique is to make several passes through the array.
- On each pass, successive pairs of elements are compared.
- If a pair is in increasing order (or the values are identical), we leave the values as they are. If a pair is in decreasing order, their values are swapped in the array.

Example 4.2.

16

Example. Sort {5, 1, 12, -5, 16} using bubble sort.

-5

(12)

5

- unsorted
- 5 > 1, swap
- 5 < 12, ok
- 12 > -5, swap
- 12 < 16, ok

1 < 5, ok

- 1
 5
 -5
 12
 16

 1
 5
 -5
 12
 16

 1
 -5
 5
 12
 16
 - 5 > -5, swap 5 < 12, ok
- 1
 -5
 5
 12
 16

 -5
 1
 5
 12
 16

-5 < 1, ok

1 < 5, ok

1 > -5, swap

sorted

Sorting; Bubble sort: Algorithm 4.4

```
(Bubble Sort) BUBBLE(DATA, N)
Here DATA is an array with N elements. This algorithm sorts the elements in DATA.
1. Repeat Steps 2 and 3 for K = 1 to N - 1.
2. Set PTR := 1. [Initializes pass pointer PTR.]
3. Repeat while PTR ≤ N - K: [Executes pass.]

(a) If DATA[PTR] > DATA[PTR + 1], then:
Interchange DATA[PTR] and DATA[PTR + 1].
[End of If structure.]
(b) Set PTR := PTR + 1.
[End of inner loop.]
[End of Step 1 outer loop.]

4. Exit.
```

```
Algorithm: (Bubble Sort) BUBBLE (DATA, N)
Here DATA is an Array with N elements. This algorithm sorts the
elements in DATA.
```

```
1. for pass=1 to N-1.
```

```
2. for (i=0; i<= N-Pass; i++)
```

```
3. If DATA[i]>DATA[i+1], then:
```

Interchange DATA[i] and DATA[i+1].

[End of If Structure.]

[End of inner loop.]

```
[End of Step 1 outer loop.]
```

4. Exit.

Example

Example. Using the bubble sort algorithm, Algorithm 4.4, find the number C of comparisons and the number D of interchanges which alphabetize the n =6 letters in PEOPLE.

Example

Example. Using the bubble sort algorithm, Algorithm 4.4, find the number C of comparisons and the number D of interchanges which alphabetize the n =6 letters in PEOPLE.

The sequences of pairs of letters which are compared in each of the n - 1 = 5 passes follow: a square indicates that the pair of letters is compared and interchanged, and a circle indicates that the pair of letters is compared but not interchanged.

Since n = 6, the number of comparisons will be C = 5 + 4 + 3 + 2 + 1 = 15. The number D of interchanges depends also on the data, as well as on the number n of elements. In this case D = 9.

Bubble Sort Time Complexity

- Best-Case Time Complexity
 - The scenario under which the algorithm will do the least amount of work (finish the fastest)

- Worst-Case Time Complexity
 - The scenario under which the algorithm will do the largest amount of work (finish the slowest).

Bubble Sort Time Complexity

Called Linear Time Best-Case Time Complexity **O(N) Order-of-N** Array is already sorted – Need 1 iteration with (N-1) comparisons **Called Quadratic Time O(N²) Order-of-N-square** Worst-Case Time Complexity – Need N-1 iterations -(N-1) + (N-2) + (N-3) + + (1) = (N-1)* N / 254

Searching in Linear Array:

- The process of finding a particular element of an array is called Searching".
- If the item is not present in the array, then the search is unsuccessful.
- There are two types of search (Linear search and Binary Search)

Linear Search:

- The linear search compares each element of the array with the search key until the search key is found.
- To determine that a value is not in the array, the
- program must compare the search key to every element in the array.
- It is also called "Sequential Search" because it traverses the data sequentially to locate the element.

Linear Array:

```
(Linear Search) LINEAR(DATA, N, ITEM, LOC)
Here DATA is a linear array with N elements, and ITEM is a given item of
information. This algorithm finds the location LOC of ITEM in DATA, or sets
LOC := 0 if the search is unsuccessful.
1.
    [Insert ITEM at the end of DATA.] Set DATA[N+1] := ITEM.
2.
   [Initialize counter.] Set LOC := 1.
3. [Search for ITEM.]
    Repeat while DATA[LOC] # ITEM:
        Set LOC := LOC + L.
    [End of loop.]
   [Successful?] If LOC = N + 1, then: Set LOC := 0.
4.
    Exit
```

Linear search Complexity

- Worst-Case Time Complexity
 - Need n+1 iterations
 - F(n)=n+1
- Average-Case Time Complexity – F(n)=(n+1)/2

Linear search Complexity

Consider the alphabetized linear array NAME in Fig. 4-23.

- (a) Using the linear search algorithm, Algorithm 4.5, how many comparisons C are used to locate Hobbs, Morgan and Fisher?
- (b) Indicate how the algorithm may be changed for such a sorted array to make an unsuccessful search more efficient. How does this affect part (a)?

Linear search Complexity

(a) C(Hobbs) = 6, since Hobbs is compared with each name, beginning with Allen, until Hobbs is found in NAME[6].

C(Morgan) = 10, since Morgan appears in NAME[10].

- C(Fisher) = 15, since Fisher is initially placed in NAME[15] and then Fisher is compared with every name until it is found in NAME[15]. Hence the search is unsuccessful.
- (b) Observe that NAME is alphabetized. Accordingly, the linear search can stop after a given name XXX is compared with a name YYY such that XXX < YYY (i.e., such that, alphabetically, XXX comes before YYY). With this algorithm, C(Fisher) = 5, since the search can stop after Fisher is compared with Goodman in NAME[5].

Chapter 4: Arrays, Records and Pointers

4.9. Multidimensional Arrays

- 1. Two-Dimensional Arrays
- 2. Example 4.11
- 3. Representation of Two-Dimensional Arrays in Memory
- 4. Example 4.12

Binary search

Sequential search

- **sequential search**: Locates a target value in an array / list by examining each element from start to finish.
 - How many elements will it need to examine?
 - Example: Searching the array below for the value **42**:

- Notice that the array is sorted. Could we take advantage of this?

Binary search

- **binary search**: Locates a target value in a *sorted* array / list by successively eliminating half of the array from consideration.
 - How many elements will it need to examine?
 - Example: Searching the array below for the value **42**:

Runtime Efficiency

- How much better is binary search than sequential search?
- **efficiency**: A measure of the use of computing resources by code.
 - can be relative to speed (time), memory (space), etc.
 - most commonly refers to run time
- Assume the following:
 - Any single C# statement takes the same amount of time to run.
 - A method call's runtime is measured by the total of the statements inside the method's body.
 - A loop's runtime, if the loop repeats N times, is N times the runtime of the statements in its body.

Sequential search

• What is its complexity class?

```
public int indexOf(int value) {
    for (int i = 0; i < size; i++) {
        if (elementData[i] == value) {
            return i;
        }
    }
    return -1; // not found
}</pre>
```

index	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
value	-4	2	7	10	15	20	22	25	30	36	42	50	56	68	85	92	103

- On average, "only" N/2 elements are visited
 - 1/2 is a constant that can be ignored $\rightarrow O(N)$

Binary search

- **binary search** successively eliminates half of the elements.
 - Algorithm: Examine the middle element of the array.
 - If it is too big, eliminate the right half of the array and repeat.
 - If it is too small, eliminate the left half of the array and repeat.
 - Else it is the value we're searching for, so stop.
 - Which indexes does the algorithm examine to find value **42**?
 - What is the runtime complexity class of binary search?

Binary search runtime

- For an array of size N, it eliminates ½ until 1 element remains. N, N/2, N/4, N/8, ..., 4, 2, 1
 - How many divisions does it take?
- Think of it from the other direction:
 - How many times do I have to multiply by 2 to reach N?
 1, 2, 4, 8, ..., N/4, N/2, N
 - Call this number of multiplications "x".

$$2^{x} = N$$

x = log₂ N

• Binary search is in the **logarithmic** complexity class.

binary search for the letter 'j'

Algorithm Examples

binary search for the letter 'j' search interval a c d f g h j l m o p r s u v x z center element found !

Binary search

```
Algorithm 4.6: (Binary Search) BINARY(DATA, LB, UB, ITEM, LOC)
              Here DATA is a sorted array with lower bound LB and upper bound UB, and
              ITEM is a given item of information. The variables BEG, END and MID
              denote, respectively, the beginning, end and middle locations of a segment of
              elements of DATA. This algorithm finds the location LOC of ITEM in DATA or
              sets LOC = NULL.
               1. [Initialize segment variables.]
                  Set BEG := LB, END := UB and MID = INT((BEG + END)/2).
                  Repeat Steps 3 and 4 while BEG ≤ END and DATA[MID] ≠ ITEM.
              21
                      If ITEM < DATA[MID], then:
              3
                          Set END := MID - 1.
                      Else:
                          Set BEG := MID + 1.
                      [End of If structure.]
                      Set MID := INT((BEG + END)/2).
                  [End of Step 2 loop.]
              5. If DATA[MID] = ITEM, then:
                       Set LOC := MID.
                  Else:
                       Set LOC := NULL.
                  [End of If structure.]
              6. Exit.
```

Complexity of the Binary search algorithm

Worst-Case Time Complexity F(n)=log(n)+1

The complexity is measured by the number f(n) of comparisons to locate ITEM in DATA where DATA contains *n* elements. Observe that each comparison reduces the sample size in half. Hence we require at most f(n) comparisons to locate ITEM where

 $2^{f(n)} > n$ or equivalently $f(n) = \lfloor \log_2 n \rfloor + 1$

That is, the running time for the worst case is approximately equal to $\log_2 n$. One can also show that the running time for the average case is approximately equal to the running time for the worst case.

Example 4.11

Suppose DATA contains 1 000 000 elements. Observe that

 $2^{10} = 1024 > 1000$ and hence $2^{20} > 1000^2 = 1\ 000\ 000$

Accordingly, using the binary search algorithm, one requires only about 20 comparisons to find the location of an item in a data array with 1 000 000 elements.

Limitations of the Binary Search Algorithm

Since the binary search algorithm is very efficient (e.g., it requires only about 20 comparisons wit an initial list of 1 000 000 elements), why would one want to use any other search algorithm

Limitations of the binary Search algorithm

Since the binary search algorithm is very efficient (e.g., it requires only about 20 comparisons with an initial list of 1 000 000 elements), why would one want to use any other search algorithm?

4.9 Multidimensional Arrays

Multidimensional Arrays

- 1. Two-Dimensional Arrays
- 2. Example 4.11
- 3. Representation of Two-Dimensional Arrays in Memory
- 4. Example 4.12

Multi-dimensional Arrays

- ≻ Linear array is one dimensional array,
 > use one subscript such as → A[i]
- > Two dimensional array

>uses two subscripts such as \rightarrow A[i,j]

> Multidimensional array

>uses 3-7 subscripts such as \rightarrow A[i,j,k].

Two Dimensional Arrays

Two dimensional Array:

- ➤ A is a collection of mxn data elements such that each element is specified by a pair of integers (such as J, K) called subscripts with the property that 1≤ J≤ M and 1≤ K≤n
- The element of A with first subscript J and second subscript K will be denoted by A [J,K].
- Two dimensional arrays are sometimes called (matrices) matrix array.

Two Dimensional Arrays

- It is also called matrices in mathematics and table in business applications.
- ➢ Size is m.n
- Length=upper bound –lower bound+1
- LB of Regular arrays=1
- Dimensions of INTEGER NUMB(2:5,-3:1)
 - \geq length of first dimension =?
 - Iength of second dimension= ?
 - The NUMB dimension=?

Example 4.11

Example 4.11

- Class of 25 students is given 4 tests.
- Store the data in a 25×4 matrix SCORE
- SCORE[K,L] contains the Kth student's score on the Lth Test.

Student	Test 1	Test 2	Test 3	Test 4
1	84	73	88	81
2	95	100	88	96
3	72	66	77	72
25	78	82	, 70	85

- M×N rectangular matrix will be represented in memory by a block of m.n sequential memory locations.
- Programing language will store the array A either in two ways:
 - 1.Column Major Order:
 - 2. Row Major Order
- Representation depends upon the program not user

(a) Column-major order

(b) Row-major order

- Linear array do not keep track of the address LOC(A[k]) of every element A[k],
- but does keep the track of Base(A), the address of first element.
- Formula LOC(A[k] = base (A) + w(k-1)

Same situation holds for **two-dimensional** mxn array A.

- Computer does not keep the Address of all elements in the array
- Computer keeps track of BASE(A) which is the address of the first element A[1,1] of A
- Computer computes the address LOC(A[J,K]) of the element A[J,K] using two different formulas.

In case of Column Major Order:

LOC (A [J, K]) = Base (A) + w [M (K-Col_LB) + (J-Row_LB)] LOC (A [J, K]) = Base (A) + w [M (K-1) + (J-1)]

- LOC (A [J, K]): is the location of the element in the Jth row and Kth column.
- Base (A) : is the base address of the array A.
- w :is the number of bytes required to store single element of the array A.
- M : is the total number of rows in the array.
- J : is the row number of the element.
- K : is the column number of the element.

In case of Row Major Order:

LOC (A [J, K]) = Base (A) + w [N (J-Row_LB) + (K-Col_LB)] LOC (A [J, K]) = Base (A) + w [N (J-1) + (K-1)]

- LOC (A [J, K]): is the location of the element in the Jth row and Kth column.
- Base (A) : is the base address of the array A.
- w :is the number of bytes required to store single element of the array A.
- N : is the total number of columns in the array.
- J : is the row number of the element.
- K :is the column number of the element.

Example 4.12

Consider the 3×4 array A

Suppose Base(A)=100 and there are w=4 words per memory cell,

- A. suppose the programing language stores twodimensional arrays using row-major order. Find the location of the element A[2,3]
- B. suppose the programing language stores twodimensional arrays using column-major order. Find the location of the element A[2,3]

Example 4.12

The formula for LOC (A [J, K]) is LOC (A [J, K]) = Base (A) + w $[N (J-Row_LB) + (K-Col_LB)]$ Row LB=1, K-Col LB=1 → LOC (A [J, K]) = Base (A) + w [N (J-1) + (K-1)] > LOC (A [2, 3]) = 100 + 4 [4 (2-1) + (3-1)] = 100 + 4 [4 (1) + 2]= 100 + 4 [4 + 2]=124 Low Addresses High Addresses Base Address З

Example 4.12 : Column-major order

The formula for LOC (A [J, K]) is LOC (A [J, K]) = Base (A) + w [M (K-1) + (J-1)]

Logical and Physical view

- The difference between the logical and physical view of data
- ➤ Logical views of 3×4 matrix array A
- Is rectangular array of data where A[K,J] is an element appears in row J and column K.
- Physical view is the representation in the memory as a linear collection of memory cells
- E.g. certain data may be viewed logically as trees or graphs although physically the data will be stored linearly in memory cells

Multi-dimensional arrays

- The first references array dimension 1, the row.
- The second references dimension 2, the column.
- The third references dimension 3. This illustration uses the concept of a page to represent dimensions 3 and higher.

Multi-dimensional arrays

To access the element in the second row, third column of page 2, for example, you use the subscripts (2, 3, 2).

 $A(:,:,1) = \\ \begin{array}{c} 1 & 0 & 3 \\ 4 & -1 & 2 \\ 8 & 2 & 1 \end{array}$ $A(:,:,2) = \\ \begin{array}{c} 6 & 8 & 3 \\ 4 & 3 & 6 \\ 5 & 9 & 2 \end{array}$

Let A be an $n \times n$ square matrix array. Write a module which

- (a) Finds the number NUM of nonzero elements in A
- (b) Finds the SUM of the elements above the diagonal, i.e., elements A[I, J] where I < J
- (c) Finds the product PROD of the diagonal elements $(a_{11}, a_{22}, \ldots, a_{nn})$

```
(a) 1. Set NUM := 0.
     2. Repeat for I = 1 to N:
          Repeat for J = 1 to N:
     3.
                 If A[I, J] \neq 0, then: Set NUM := NUM + 1.
             [End of inner loop.]
         [End of outer loop.]
         Return.
     1. Set SUM := 0.
(b)
     2. Repeat for J = 2 to N:
             Repeat for I = 1 to J - 1:
     3.
                 Set SUM := SUM + A[I, J].
             [End of inner Step 3 loop.]
     4. Return.

    Set PROD := 1. [This is analogous to setting SUM = 0.]

(c)
     Repeat for K = 1 to N:
             Set PROD := PROD * A[K, K].
         [End of loop.]
         Return.
     3.
```

4.11 Suppose multidimensional arrays A and B are declared using

A(-2:2, 2:22) and B(1:8, -5:5, -10:5)

- (a) Find the length of each dimension and the number of elements in A and B.
- (b) Consider the element B[3, 3, 3] in B. Find the effective indices E₁, E₂, E₃ and the address of the element, assuming Base(B) = 400 and there are w = 4 words per memory location.
- (a) The length of a dimension is obtained by:

Length = upper bound - lower bound +1

Hence the lengths L_i of the dimensions of A are:

 $L_1 = 2 - (-2) + 1 = 5$ and $L_2 = 22 - 2 + 1 = 21$

Accordingly, A has $5 \cdot 21 = 105$ elements. The lengths L_i of the dimensions of B are:

 $L_1 = 8 - 1 + 1 = 8$ $L_2 = 5 - (-5) + 1 = 11$ $L_3 = 5 - (-10) + 1 = 16$

Therefore, B has $8 \cdot 11 \cdot 16 = 1408$ elements.

(b) The effective index E_i is obtained from E_i = k_i - LB, where k_i is the given index and LB is the lower bound. Hence

$$E_1 = 3 - 1 = 2$$
 $E_2 = 3 - (-5) = 8$ $E_3 = 3 - (-10) = 13$

The address depends on whether the programming language stores B in row-major order or column-major order. Assuming B is stored in column-major order, we use Eq. (4.8):

$$\begin{split} E_3L_2 &= 13 \cdot 11 = 143 \\ (E_3L_2 + E_2)L_1 &= 151 \cdot 8 = 1208 \\ \text{LOC}(B[3, 3, 3]) &= 400 + 4(1210) = 400 + 4840 = 5240 \end{split}$$

Therefore,

98

Suppose multidimensional arrays A and B are declared using

A(-2:2, 2:22) and B(1:8, -5:5, -10:5)

- (a) Find the length of each dimension and the number of elements in A and B.
- (b) Consider the element B[3, 3, 3] in B. Find the effective indices E₁, E₂, E₃ and the address of the element, assuming Base(B) = 400 and there are w = 4 words per memory location.

(a) The length of a dimension is obtained by:

Length = upper bound - lower bound + 1

Hence the lengths L_i of the dimensions of A are:

$$L_1 = 2 - (-2) + 1 = 5$$
 and $L_2 = 22 - 2 + 1 = 21$

Accordingly, A has $5 \cdot 21 = 105$ elements. The lengths L, of the dimensions of B are:

 $L_1 = 8 - 1 + 1 = 8$ $L_2 = 5 - (-5) + 1 = 11$ $L_3 = 5 - (-10) + 1 = 16$

Therefore, B has $8 \cdot 11 \cdot 16 = 1408$ elements.

Therefore,

(b) The effective index E_i is obtained from E_i = k_i - LB, where k_i is the given index and LB is the lower bound. Hence

$$E_1 = 3 - 1 = 2$$
 $E_2 = 3 - (-5) = 8$ $E_3 = 3 - (-10) = 13$

The address depends on whether the programming language stores B in row-major order or column-major order. Assuming B is stored in column-major order, we use Eq. (4.8):

$$\begin{split} E_3 L_2 &= 13 \cdot 11 = 143 \\ (E_3 L_2 + E_2) L_1 &= 151 \cdot 8 = 1208 \\ \text{LOC}(B[3, 3, 3]) &= 400 + 4(1210) = 400 + 4840 = 5240 \end{split}$$

100

Problem

Consider the following multidimensional arrays:

X(-5:5, 3:33) Y(3:10, 1:15, 10:20)

- (a) Find the length of each dimension and the number of elements in X and Y.
- (b) Suppose Base(Y) = 400 and there are w = 4 words per memory location. Find the effective indices E₁, E₂, E₃ and the address of Y[5, 10, 15] assuming (i) Y is stored in row-major order and (ii) Y is stored in column-major order.

4.13. Matrices

Matrices

- 1. Algebra of Matrices
- 2. Example 4.23
- 3. Algorithm 4.7 (Matrix Multiplication)
- 4. Example 4.24

Matrices Multiplication Algorithm

- > Input two matrixes, Output Output matrix C.
- > Matrix-Multiply(A, B)
- **1. if columns [A] ≠ rows [B]**
- 2. then error "incompatible dimensions"
- 3. else
- 4. for i =1 to rows [A]
- 5. for j = 1 to columns [B]
- 6. C[i, j] =0
- 7. for k = 1 to columns [A]
- 8. C[i, j]=C[i, j]+A[i, k]*B[k, j]
- 9. return C
- Complexity O(n^3)

Algorithm Description

- To multiply two matrixes sufficient and necessary condition is "number of columns in matrix A = number of rows in matrix B".
- \succ Loop for each row in matrix A.
- Loop for each columns in matrix B and initialize output matrix C to 0.
- \succ This loop will run for each rows of matrix A.
- \succ Loop for each columns in matrix A.
- > Multiply A[i,k] to B[k,j] and add this value to C[i,j]
- \succ Return output matrix C.

تم الإنتهاء من المحاضرة الرابعة