
By

Dr. Reda Elbarougy

رضا الباروجى/ د

Lecturer of computer sciences 

In Mathematics Department

Faculty of Science

Damietta University



رقم المحاضرة 

2

التاريخ  رقم المحاضرة 

02-2020 1المحاضرة 

03-03-2020 2المحاضرة 

10-03-2020 3المحاضرة 

17-03-2020 4المحاضرة 

24-03-2020 5المحاضرة 

6المحاضرة 

7المحاضرة 

8المحاضرة 

9المحاضرة 

10المحاضرة 

11المحاضرة 



Chapter 5: 

Linked Lists Part I

3



5.1. Introduction 

5.2. Linked Lists

1. Example 5.1

5.3. Representation of Linked Lists in Memory

1. Example 5.2 to 5.5

5.4. Traversing a linked list

1. Algorithm 5.1:

2. Example 5.6 and 5.7

Chapter 5: Linked Lists 

4



5.5. Searching a linked list

1. Algorithm 5.2

2. Example 5.8

3. Algorithm 5.3

4. Example 5.9

Chapter 5: Linked Lists 

5

5.6. Memory Allocation; Garbage Collection 

1. Example 5.10 to 5.12

2. Garbage Collection

3. Overflow and underflow



• Why linked lists

• Linked lists

• Representation of Linked lists in memory

• Traversing a linked lists

• Memory allocation: Garbage collection

• Overflow and Underflow

• Basic operations of linked lists

– Insert, find, delete, print, etc.

• Variations of linked lists

– Circular linked lists

– Doubly linked lists

Linked List outline



5.1 Introduction 

7



• Data processing frequently involves storing and 

processing data organized into lists.

• One way to store such data is by means of arrays.

• Arrays have certain disadvantages. It is relatively 

expensive to insert and delete elements in an 

array.

5.1 Introduction 

Fig. 5-1



• Since an array occupies a block of memory 

space, one can’t simply change the size of an 

array when an additional space is required.

• For this reason, arrays are called dense lists and 

are said to be static data structures.

Disadvantages of using Arrays



• Another way of storing a list in memory is to 

have each element in the list contain a field, 

called a link or pointer which contains the 

address of the next element in the list.

• Thus successive elements in the list need not 

occupy adjacent space in memory.

• This will make it easier to insert and delete 

elements in the list.

Using Linked Lists



• If one were mainly interested in searching 

through data for inserting and deleting, one 

would not store the data in an array but rather in 

a list using pointers.

• This later type of data structure is called a linked 

list which is the subject of this chapter.

Using Linked Lists



• Disadvantages of arrays as storage data structures:

– slow insertion in ordered array 

– Fixed size

• Linked lists solve some of these problems

• Linked lists are general purpose storage data structures. 

5.1 Introduction: Why linked lists



5.2 Linked List

13



 A linked list, or one way list, is a linear collection of data elements, called 

nodes, where the linear order is given by means of pointers.

 Each node is divided into two parts: 

 The first part contains the information of the element, and 

 The second part, called the link field or next pointer field, contains the 

address of the next node in the list see fig 5.2 and the next figure.

 The pointer of the last node contains a special value, called the null pointer.

 A pointer variable – called START which contains the address of the first 

node.

 A special case is the list that has no nodes, such a list is called the null list 

or empty list and is denoted by the null pointer in the variable START. 

Linked list with 3 nodes

Start

Data Next

node node

DataData Next

node

5.2 Linked List

node

A

data pointer



1

• A schematic diagram of a linked list with 2 nodes, 

100

NULL pointer (points to nothing)Data member and pointer

500…

3 2

5.2 Linked List



5.2 Linked List

16

Fig. 5-2 Linked List with 6 Nodes



• In actual practice, 0 or a negative number is used for the null 

pointer.

• The null pointer, denoted by x in the diagram, signals the 

end of the list. 

• The linked list also contains a list pointer variable-called 

START or NAME which contains the address of the first 

node in the list; hence there is an arrow drawn from START 

to the first node. 

• Clearly, we need only this address in START to trace 

through the list. 

5.2 Linked List



18

– Linked lists are more complex to code and manage than arrays, 
but they have some distinct advantages.

– Dynamic: a linked list can easily grow and shrink in size.

• We don’t need to know how many nodes will be in the list. 
They are created in memory as needed.

• In contrast, the size of a C++ array is fixed at compilation time.

– Easy and fast insertions and deletions

• To insert or delete an element in an array, we need to copy to 
temporary variables to make room for new elements or close 
the gap caused by deleted elements.

• With a linked list, no need to move other nodes. Only need to 
reset some pointers.

Array versus Linked Lists



 A linked list organizes a collection of data items (elements ) 

such that elements can easily be added to and deleted from 

any position in the list. 

 Only  references to next elements are updated in insertion 

and deletion operations.

 There is no need to copy or move  large blocks of data to 

facilitate insertion and deletion of elements.

 Lists grow dynamically.

5.2 Linked Lists



A hospital ward contains 12 beds, of which 9 are occupied 

as shown in Fig. 5-3. Suppose we want an alphabetical 

listing of the patients. 

EXAMPLE 5.1 

Fig. 5-3



 This listing may be given by the pointer field, called 

Next in the figure. 

 We use the variable START to point to the first patient. 

 Hence START contains 5, since the first patient, 

Adams, occupies bed 5. 

 Also, Adams's pointer is equal to 3, since Dean, the 

next patient, occupies bed 3; Dean's pointer is 11, since 

Fields, the next patient, occupies bed 11; and so on. 

 The entry for the last patient (Samuels) contains the 

null pointer, denoted by O. (Some arrows have been 

drawn to indicate the listing of the first few patients.)

EXAMPLE 5.1 



5.3 Representation Of Linked Lists In Memory 

22



 Let LIST be a linked list. 

 Then LIST will be maintained in memory, unless 

otherwise specified or implied, as follows. 

 First of all, LIST requires two linear arrays

 we will call them here INFO and LINK such that 

INFO[K] and LINK[K] contain, respectively, the 

information part and the next pointer field of a node of 

LIST. 

 As noted above, LIST also requires ,a variable name-

such as ST ART which contains the location of the 

beginning of the list, 

 and a next pointer sentinel-denoted by NULL-which 

indicates the end of the list. 

5.3 REPRESENTATION OF LINKED LISTS IN MEMORY



 Since the subscripts of the arrays INFO and LINK will 

usually be positive, we will choose NULL = 0, unless 

otherwise stated. 

 The following examples of linked lists indicate that the 

nodes of a list need not occupy adjacent elements in 

the arrays INFO and LINK, and that more than one list 

may be maintained in the same linear arrays INFO 

and LINK. 

 However, each list must have its own pointer variable 

giving the location of its first node.

5.3 REPRESENTATION OF LINKED LISTS IN MEMORY



1

2

3

4

5

6

7

8

67

45

80

75

90

3
5

2

7

4

0

START START=3, INFO[3]=45

LINK[3]=2, INFO[2]=67

LINK[2]=5, INFO[5]=75

LINK[5]=4, INFO[4]=80

LINK[4]=7, INFO[7]=90

LINK[7]=0, NULL value, So the list has 

ended

INFO LINK

Example



26

Fig. 5-4

EXAMPLE 5.2

START=9, INFO[9]=N is the first character.

LlNK[9]=3, INFO[3]=0 is the second character. 

LlNK[3]=6, INFO[6]=  (blank) is third character. 

LlNK[6]=11, INFO[l1]=E is the fourth character. 
LlNK[l1]=7, INFO[7] =X is the fifth character. 

LlNK(7] = 10, INFO[1O] = I is sixth character. 
LlNK[1O] = 4, so INFO[4] = T is seventh character. 

LlNK[4] = 0, the NULL! value, so the list has 
ended.

• Figure 5-4 pictures a linked list in memory where each 
node of the list contains a single character. 

• We can obtain the actual list of characters, or, in other 
words, the string, as follows:



• Figure 5-5  pictures how two lists of test scores, here 

ALG and GEOM, may be maintained in memory 

where the nodes of both lists are stored in the same 

linear arrays TEST and LINK. 

• Observe that the names of the lists are also used as 

the list pointer variables. 

• Here ALG contains 11, the location of its first node, 

and GEOM contains 5, the location of its first node. 

EXAMPLE 5.3



28
Fig. 5-5

EXAMPLE 5.3



• Following the pointers, we see that ALG consists of 

the test scores

88, 74, 93, 82

and GEOM consists of the test scores

84, 62, 74, 100, 74, 78

(The nodes of ALG and some of the nodes of GEOM are 

explicitly labeled in the diagram.)

EXAMPLE 5.3



Suppose a brokerage firm  الماليةالوساطة شركة has four 

brokers السماسرة and each broker has his own list of 

customers. Such data may be. organized as in Fig.5-6.

 That is, all four lists of customers appear in the same 

array CUSTOMER, and an array LINK contains the next 

pointer fields of the nodes of the lists. 

There is also an array BROKER which contains the list 

of brokers, and a pointer array POINT such that 

POINT[K) points to the beginning of the list of customers 

of BROKER[K).

EXAMPLE 5.4



31Fig. 5-6

EXAMPLE 5.4



 Accordingly, Bond's list of customers, as indicated 

by the arrows, consists of

Grant, Scott, Vito, Katz

 Similarly, Kelly's list consists of

Hunter, McBride, Evansand

Nelson's list consists of

Teller, Jones, Adams, Rogers, Weston 

 Hall's list is the null list, since the null pointer 0 

appears in POINT[3].

EXAMPLE 5.4



• Suppose the personnel file of a small company 
contains the following data on its nine employees:

Name, Social Security Number, Sex, Monthly Salary

• Normally, four parallel arrays, say NAME, SSN, 
SEX, SALARY, are required to store the data as 
discussed in Sec. 4.12. 

• Figure 5-7 shows how the data may be stored as a 
sorted (alphabetically) linked list using only an 
additional array LINK for the next pointer field of the 
list and the variable START to point to the first 
record in the list. 

• Observe that 0 is used as the null pointer.

EXAMPLE 5.5



34Fig. 5-7

EXAMPLE 5.5



Problem 



Problem 



Problem 



5.4 Traversing a linked list

38



 Let LIST be a linked list in memory stored in linear arrays INFO and LINK 

with START pointing to the first element and NULL indicating the end of 

LIST.

 We want to traverse LIST in order to process each node exactly once.

 Pointer variable PTR points to the node that is currently being 

processed.

 LINK[PTR] points to the next node to be processed.

 Thus update PTR by the assignment 

PTR : =LINK[PTR]

START

X

INFO LINK

PTR

Fig : PTR : = LINK[PTR]

5.4 Traversing a linked lists



5.4 Traversing a linked lists

40

PTR : = LINK[PTR]

• moves the pointer to 

the next node in the 

list, as pictured in Fig. 

Fig. 5-8  PTR:=LINK[PTR]



• Algorithm 5.1: (Traversing a Linked List) Let LIST 

be a linked list in memory. This algorithm traverses 

LIST, applying an operation PROCESS to each 

element of LIST. The variable PTR points to the 

node currently being processed.

1.Set PTR:= START. [Initializes pointer PTR.]

2.Repeat Steps 3 and 4 while PTR != NULL.

3. Apply PROCESS to INFO[PTR].

4. Set PTR: = LINK[PTR]. [PTR now points to the 

next node.] 

[End of Step 2 loop.]

5.Exit.

Algorithm 5.1



 Initialize PTR or START. 

 Then process INFO[PTR], the information at the first 
node.

 Update PTR by the assignment 

 PTR: = LINK[PTR], so that PTR points to the second 
node. Then process INFO[PTR], the information at the 
second node.

 Again update PTR by the assignment PTR:= LINK[PTR], 
and then process INFO[PTR], the information at the third 
node. 

 And so on. 

 Continue until PTR = NULL, which signals the end of the 
list.

5.4 Traversing a linked lists



The following procedure prints the information at 
each node of a linked list. Since the procedure 
must traverse the list, it will be very similar to 
Algorithm 5.1. 

 In other words, the procedure may be obtained by 
simply substituting the statement Write: INFO[PTR] for 
the processing step in Algorithm 5.1. 

Example 5.6



For printing the information at each node of a linked list, must traverse 

the list.

Procedure 5.1 : PRINT(INFO, LINK, START)

Algorithm Prints the information at each node of the list. 

1. Set PTR : =START.

2. Repeat steps 3 and 4 while PTR : ≠ NULL:

3. Write : INFO[PTR].

4. Set PTR : =LINK[PTR].

5. Exit.

Example 5.6



For Finding the number NUM of elements in a linked list, must 

traverse the list.

Procedure : COUNT(INFO, LINK, START, NUM)

1. Set NUM: =0.

2. . Set PTR : =START.

3. Repeat steps 4 and 5 while PTR : ≠ NULL:

4. Set NUM : =NUM+1.

5. Set PTR : =LINK[PTR].

6. Exit.

Example 5.7



Problem



Problem 



5.5 Searching a Linked List

48



Algorithm 5.2 :LIST is unsorted

 Let LIST be a linked list in memory. 

 We are given an ITEM of information. 

 In this section we are going to discuss the two searching 

algorithms for finding the location LOC of the node where 

ITEM first appears in LIST.



LIST is unsorted

 The data in LIST are not necessarily sorted. 

 Then one searches for ITEM in LIST by traversing through the 

list using a pointer variable PTR and comparing ITEM with the 

contents INFOR[PTR] of each node, one by one, of LIST. 

 Before we update the pointer PTR by PTR := LINK[PTR]

 we require two tests. First we have to check whether we 

reached the end of the list; i.e.,   PTR = NULL

 If not, then we check to see whether  INFO[PTR] = ITEM



Algorithm 5.2 :LIST is unsorted

SEARCH(START, INFO, LINK, ITEM, LOC)

• Let LIST is a linked list in memory. 

• This algorithm finds the location LOC of the node where ITEM 

first appears in LIST, or sets LOC:=NULL.



LIST is Sorted

 The data in the LIST are sorted. 

 Again we search for ITEM in LIST by traversing the list using 

a point variable PTR and comparing ITEM with the contents 

INFO[PTR] of each node, one by one, of LIST. 

 Here we can stop once ITEM exceeds INFO[PTR]. 



Algorithm 5.3: :LIST is sorted deseeding 

Note that the List is sorted deseeding 



5.6 Memory allocation; Garbage collection

54



Memory space can be reused if a node is deleted from a list

– i.e deleted node can be made available for future use.

Together with the linked list in memory, a special list is 

maintained which consists of unused memory cells. 

This list, which has its own pointer, is called the list of 

available space or the ‘Free Storage list’ or the ‘Free 

Pool’ .

Memory allocation



• Suppose the list of patients in last Example is stored in 

the linear arrays BED and LINK (so that the patient in 

bed K is assigned to BED[K]). 

• Then the available space in the linear array BED may be 

linked as in Fig. 5.9.

• Observe that:

• BED[10] is the first available bed, 

• BED[2] is the next available bed, and 

• BED[6] is the last available bed. 

• Hence BED[6] has the null pointer in its next pointer 

field; that is, LINK[6] = 0.

Example 5.10



57Fig. 5-9

EXAMPLE 5.10



(a) The available space in the linear array TEST in 

Fig.  may be linked as in Fig.  Observe that each of 

the lists ALG and GEOM may use the AVAIL list. 

Note that AVAIL = 9, so TEST[9] is the first free node 

in the AVAIL list. Since LINK[AVAIL] = LINK[9] = 10, 

TEST[l0] is the second free node in the AVAIL list. 

And so on.

EXAMPLE 5.11 (a)



59Fig. 5-10

EXAMPLE 5.11 (a)



(b) Consider the personnel file in Fig. 5-7. The 

available space in the linear array NAME may be 

linked as in Fig. 5-11. Observe that the free-storage 

list in NAME consists of NAME[8], NAME[ll], 

NAME[13], NAME[5] and NAME[1]. Moreover, 

observe that the values in LINK simultaneously list 

the free-storage space for the linear arrays SSN, 

SEX and SALARY.

EXAMPLE 5.11 (b)



61Fig. 5-11

EXAMPLE 5.11 (b)



(c)The available space in the array CUSTOMER in 

the Fig. may be linked as in Fig. given. We 

emphasize that each of the four lists may use the 

AVAIL list for a new customer.

EXAMPLE 5.11 (c)



63Fig. 5-12

EXAMPLE 5.11 (c)



• Suppose LIST(INFO, LINK, START, AVAIL) has 

memory space for n = 10 nodes. Furthermore, 

suppose LIST is initially empty. Figure  shows the 

values of LINK so that the AVAIL list consists of the 

sequence

INFO[l],INFO[2],…………,INFO[10]

that is, so that the AVAIL list consists of the 

elements of INFO in the usual order. Observe that 

START = NULL, since the list is empty.

EXAMPLE 5.12



65Fig. 5-13

EXAMPLE 5.12



5.6 Garbage collection (page 127)

66



The operating system of a computer may periodically 

collect all the deleted space onto the free storage list. 

Any technique which does this collection is called garbage 

collection.

Garbage Collection 



Garbage collection usually takes place in two steps. 

1.The computer  runs through all lists, tagging those cells which are currently in use.

2.The  computer runs through all list collecting all  list, collecting all untagged space 

onto the free storage list. 

Sent to 

avail list

Garbage

(Deleted Space) 

Computer 

programs

Periodic

Collector

…

Avail List (Free space)

Takes 

space 

avail list

Garbage Collection 



The garbage collection may take place 

when there is only some minimum amount of space or no 

space at all left in the free – storage list, or 

when the CPU is idle & has time to do the collection.

[ NOTE:- Garbage collection is invisible to the 

programmer .]

Garbage Collection 



 Overflow:

– Sometimes data are inserted into a data structure but there is no 
available space.

– This situation is called overflow

– Example: In linked list overflow occurs when

• AVAIL= NULL and 

• There is an insertion operation

Overflow and Underflow



 Underflow:

– Situation:

• Want to delete data from data structure that is empty.

– Example: In linked list Underflow occurs when

• START = NULL and 

• There is an deletion operation

Overflow and Underflow



Programming problems

72



Programming problems

73



تم الإنتهاء من المحاضرة


