Third Year Stats. & Comp. Stochastic Process Lecture # 7 Date: Saturday 29-3-2020 First Entrance Time: Two hours Faculty of Science

Department of Mathematics

بسم هللا الرحمن الرحيم

أبنائي طلاب الفرقة الثالثة - شعبة الاحصاء وعلوم الحاسب - كلية العلوم - جامعة دمياط السالم عليكم ورحمة للا وبركاته أرجو من للا العلى القدير أن يحفظكم برعايته وأن تكونوا جميعا بصحة جيدة أنتم و أسركم الكريمة، و أن تمر

هذه المرحلة (المحنة) بأقل خسائر علينا وعليكم وعلى مصرنا العزيزة وعلى شعوب العالم جميعا، كما أناشدكم جميعا أن تلتز مو ا بتو جيهات أولى الأمر !.

أرجو أن تستثمروا هذه الفترة فى الدراسة الجادة والبحث العلمى على الإنترنت لتعلم كل جديد عن مواضيع المقرر الدراسى"العمليات العشوائية" و أن تزيدوا من معلوماتكم وتنجزوا فى دراستكم قدر اإلمكان. بالنسبة للمحاضرات المتبقية فى مادة العمليات العشوائية: إن شاء للا سوف أرسل لكم دليل واضح لكل محاضرة متبقية، وذلك فى تاريخ وميعاد محاضرتنا األسبوعية كما كان فى جدول الكلية "**االحد من كل أسبوع**"، ويتم ذلك عن طريق **د. إيمان الحديدى** المسئولة عن رفع المحاضرات على موقع الجامعة

- -1 أرجو أن تكون وصلتكم المحاضرة السادسة على موقع الجامعة فى ميعادها يوم السبت بتاريخ 2020/3/22 وهى إستكمال آلخر محاضرة توقفنا عندها!
- -2 مرفق لكم المحاضرة السابعة على موقع الجامعة فى ميعادها يوم السبت بتاريخ 2020/3/29 وهى استكمال للمحاضرة السادسة!

تنبيه هام: في حالة وجود أى صعوبات تواجه (أى واحد فيكم) في هذا المقرر، يجب طرحها ومناقشتها أولا مع باقى زمالئكم، وان استمرت، ، تقوموا بإرسالها لى عن طريق د. غدير الشريف وان شاء اللة سوف أقوم بتذليلها والرد عليها.

حفظكم الله و وفقكم لما فيه رضاه

Prof. M A El-Shehawey

1

First-passage and first-return times

Def. (First-passage times)

The first-passage time T_{ij} is the RV that represents the first time to

go from state *i* to state *j*, and is expressed as:
\n
$$
T_{ij} = \min \{ k > 0 : X_{k} = j | X_{0} = i \}, \text{ for some } k = 1, 2, ...
$$

 k : is the number of transitions in a path from states *i* to *j*.

 T_{ij} : is the minimum number of transitions in a path from *i* to *j*.

Mean Return Times

 Another interesting random variable is the first return time. In particular, assuming the MC is in i , we consider the expected time (number of steps) needed until the chain returns to state *i*.

Def. (Time for first return or recurrence time)

We define the recurrence time (time for first visit or return time or waiting time) $T_i = T_{ii}$ as the first time that the MC returns to state *i*:
 $T_{ii} = \min \{ k > 0 : X_{k} = i | X_{0} = i \}.$

$$
T_{ii} = \min\{k > 0 : X_{i} = i | X_{0} = i\}.
$$

The **probability** that the **first recurrence to state** *i* occurs at the $n^{\textit{th}}$ **-step** is **ability** that the **first recurrence to state** *i* occurs at the
 $f_{ii}^{(n)} = Pr\{T_{ii} = n\} = Pr\{X_n = i, X_{n-1} \neq i, ..., X_1 \neq i | X_0 = i\}$

$$
f_{ii}^{(n)} = \Pr\{T_{ii} = n\} = \Pr\{X_n = i, X_{n-1} \neq i, ..., X_1 \neq i | X_0 = i\}
$$

$$
= \Pr\{T_i = n | X_0 = i\}.
$$

T_i: is the time for first visit to state *i* given $X_0 = i$.

The probability $f_{ii}^{(n)} \equiv f_i^{(n)}$ are known as first return probabilities to the state *i* occurs at the n^* -step.

Define $f_i^{(0)} = f_i^{(0)} = 0$. The probability $f_{ii}^{(n)} = f_i^{(n)}$ is not the same as $p_{ii}^{(n)}$ which is the probability that a return occurs at the n^* -step, and includes possible returns at steps 1,2,...,*n*−1 also

<u>Relationship between the probabilities</u> $p_{ii}^{(n)}$ **and** $f_{ii}^{(n)}$

There exist relationships between the n^* -step transition probabilities of a MC $p_{ii}^{(n)}$ and the first return probabilities $f_{ii}^{(n)}$. The transition from state *i* to *i* at the *n*^{*n*}-step, $p_{ii}^{(n)}$, may have its first return to state *i* at any of the steps $j = 1, 2, ..., n$. It is easy to see that

$$
p_{ii}^{(1)}(=p_{ii})=f_i^{(1)},
$$

\n
$$
p_{ii}^{(2)}=f_i^{(2)}+f_i^{(1)}p_{ii}^{(1)},
$$

\n
$$
p_{ii}^{(3)}=f_i^{(3)}+f_i^{(1)}p_{ii}^{(2)}+f_i^{(2)}p_{ii}^{(1)},
$$

this formula imply that the probability of a return at the third step $p_{ii}^{(3)}$ is the probability of a first return at the third step $f_i^{(3)}$ $f_i^{(3)}$, or the probability of a first return at the first step and a return two steps later $f_i^{(1)} p_{ii}^{(2)}$, or the probability of a first return at the second step and a return one step later $f_i^{(2)}p_{ii}^{(1)}$. In general,

step later
$$
f_i^{(i)'}p_{ii}^{(i)}
$$
.
\n
$$
p_{ii}^{(n)} = f_{ii}^{(0)}p_{ii}^{(n)} + f_{ii}^{(1)}p_{ii}^{(n-1)} + ... + f_{ii}^{(n)}p_{ii}^{(0)}
$$
\n
$$
= \sum_{r=1}^{n} f_{ii}^{(r)}p_{ii}^{(n-r)} = f_{ii}^{(n)} + \sum_{r=1}^{n-1} f_{ii}^{(r)}p_{ii}^{(n-r)}, \quad n \ge 2,
$$

since $f_{ii}^{(0)} = 0$ and $p_{ii}^{(0)} = 1$.

The above formulas become iterative formulas for the sequence of

first returns $f_{ii}^{(n)} \equiv f_i^{(n)}$ which can be expressed as

$$
f_i^{(1)} = p_{ii}^{(1)} \left(= p_{ii}\right),
$$

$$
f_i^{(n)} = p_{ii}^{(n)} - \sum_{r=1}^{n-1} f_i^{(r)} p_{ii}^{(n-r)}, \quad n \ge 2,
$$

which implies that the probability that based on the condition that the MC started at i^* state at time $t = 0$, and would again be at i^* state at time $t = n$, provided it did not ever come to the i^{ω} state at any of the times $t = 1, 2, ..., n-1$.

This is the **first return probability** for time $t = n$ (probability of first recurrence to *i* at the n^* -step, i.e., the probabilities that state *i* is revisited after the first, second, third, etc., transition times).

 It is clear that we have a set of recurrence relations giving the recurrence time distribution $\left\{f_i^{(n)} \equiv f_i^{(n)}\right\}$ in terms of the $p_{ii}^{(n)}$.

Def. (Probability of ever returning to state)

We define the probability that the MC returns at least once (ever returning) to *i* (probability of recurrence to *i*) as $f_i \equiv f_i$, where

the probability that the WUC returns at least once
to *i* (probability of recurrence to *i*) as
$$
f_i \equiv f_{ii}
$$
, wh
 $f_i = f_{ii} = Pr\{T_{ii} < \infty\} = Pr\{T_i < \infty | X_0 = i\} = \sum_{n=1}^{\infty} f_{ii}^{(n)}$,

and probability of **never returning** to *i* is $1 - f_i = Pr(T_{ii} = \infty)$.

Transience and recurrence

Def. (Transient state)

If $f_i = \Pr\{T_{ii} < \infty\} < 1$, then the state *i* is called **transient**, i.e., a state *i* is **transient** if the MC can leave but cannot return. In this case there is positive probability of never returning to state *i*.

Def. (Recurrent State)

If $f_i = Pr\{T_{ii} < \infty\} = 1$, then the state *i* is called **recurrent** (or persistent), i.e., if once the MC reaches the state, it must return "or never leaves", the returns to the state *i* are sure events.

Lemma (1). The state *j* is **recurrent** or **transient** according as

$$
\sum_{n=1}^{\infty} p_{jj}^{(n)} = \infty \text{ or } <\infty.
$$

Proof. By the first entrance theorem "with $p_{ii}^{(0)} = 1$ "
 $\sum_{n=1}^{\infty} p_{ii}^{(n)} = \sum_{n=1}^{\infty} \sum_{n=1}^{n} f_{ii}^{(k)} p_{ii}^{(n-k)} = \sum_{n=1}^{\infty} f_{ii}^{(k)} \sum_{n=1}^{\infty} p_{ii}^{(n-k)}$ e theorem "wire"

$$
\sum_{n=1}^{\infty} p_{jj}^{(n)} = \infty \text{ or } < \infty.
$$

first entrance theorem "with $p_{ii}^{(0)} = 1$ "

$$
\sum_{n=1}^{\infty} p_{ii}^{(n)} = \sum_{n=1}^{\infty} \sum_{k=1}^{n} f_{ii}^{(k)} p_{ii}^{(n-k)} = \sum_{k=1}^{n} f_{ii}^{(k)} \sum_{n=k}^{\infty} p_{ii}^{(n-k)}
$$

$$
= f_{ii} \sum_{n=0}^{\infty} p_{ii}^{(n)} = f_{ii} \left(1 + \sum_{n=1}^{\infty} p_{ii}^{(n)} \right).
$$

Hence, if $\sum p_{ii}^{(n)}$ 1 *n jj n p* ∞ = $\sum p_{jj}^{(n)} < \infty$, we have $f_{ii} < 1$ and therefore state j is **nt**. Now
 $\sum_{n=1}^{N} r_{ij}^{(n)}$ $\sum_{n=1}^{N} r_{ij}^{(n)}$ $\sum_{n=1}^{N} r_{ij}^{(n)}$ $\sum_{n=1}^{N} r_{ij}^{(n)}$ $\sum_{n=1}^{N} r_{ij}^{(n)}$ $\sum_{n=1}^{N} r_{ij}^{(n)}$ $\sum_{n=1}^{N} r_{ij}^{(n)}$

transient. Now

$$
= f_{ii} \sum_{n=0}^{n} p_{ii}^{(n)} = f_{ii} \left(1 + \sum_{n=1}^{n} p_{ii}^{(n)} \right).
$$

Hence, if $\sum_{n=1}^{\infty} p_{jj}^{(n)} < \infty$, we have $f_{ii} < 1$ and therefore state j is
transient. Now

$$
\sum_{n=1}^{N} p_{ii}^{(n)} = \sum_{n=1}^{N} \sum_{k=1}^{n} f_{ii}^{(k)} p_{ii}^{(n-k)} = \sum_{k=1}^{N} f_{ii}^{(k)} \sum_{n=k}^{N} p_{ii}^{(n-k)} \le \sum_{k=1}^{N} f_{ii}^{(k)} \sum_{u=0}^{N} p_{ii}^{(u)},
$$

then $f_{ii} = \sum_{k=1}^{\infty} f_{ii}^{(k)} \ge \sum_{k=1}^{N} f_{ii}^{(k)} \ge \frac{\sum_{n=1}^{N} p_{ii}^{(n)}}{\sum_{u=0}^{N} p_{ii}^{(u)}} \to 1$ as $N \to \infty$, therefore

 (n) 1 *n jj n p* ∞ = $\sum p_{jj}^{(n)} = \infty$ implies that $f_{ii} = 1$, that is state *j* is **recurrent**. **Def**. (Probability of first passage at time *n*)

The probability of the first-passage (first visit or reaching) to state *j* given $X_0 = i$ occurs at the *n*^{n}-step is bability of the first-passage (first visit or reachonology $X_0 = i$ occurs at the n^m -step is
 $f_{ij}^{(n)} = Pr\{X_n = j, X_{n-1} \neq j, ..., X_1 \neq j | X_0 = i\}$, for *n*

$$
f_{ij}^{(n)} = Pr\{X_n = j, X_{n-1} \neq j, ..., X_1 \neq j | X_0 = i\}
$$
, for $n = 1, 2, ...$

Then the probability distribution of the first passage time
$$
T_{ij}
$$
 is
\n
$$
f_{ij}^{(n)} = \Pr\left\{T_{ij} = n\right\} = \Pr\left\{T_{j} = n \mid X_{0} = i\right\}, \text{ for } n = 1, 2, \dots,
$$

 J_{ij} = Pr{ I_{ij} = n } = Pr{ I_j = $n | X_0 = i$ }, for $n = 1, 2, ...$,
where $T_j = \min \{ k > 0 : X_k = j \}$ is the unconditional first passage time to state j , i.e., T_j is a stochastic variable denoting the first time that the chain enters state *j* .

Def. (Probability of first-passage or of ever hits state)

The **probability** of the first-passage (ever reaching) to state *j* starting from the state *i* is e state *i* is
= $\sum_{n=1}^{\infty} f_{ij}^{(n)} = Pr\left\{T_{ij} < \infty\right\} = Pr\left(T_{j} < \infty \mid X_{0} = i\right)$

the state *i* is
\n
$$
f_{ij} = \sum_{n=1}^{\infty} f_{ij}^{(n)} = \Pr \{ T_{ij} < \infty \} = \Pr \{ T_j < \infty \mid X_0 = i \}
$$
\n
$$
= \Pr \{ \text{ever visits } j \text{ starting from } i \},
$$

,

whence $f_{ij}^* = 1 - f_{ij} = Pr(T_{ij} = \infty)$ × $= Pr(\text{ever visits } j \text{ starting from } i),$
 $= 1 - f_{ij} = Pr(T_{ij} = \infty) = Pr(X_{ij} \neq j \text{ for all } m \geq 1 | X_{ij} = i).$ whence $f_{ij} = 1 - f_{ij} = Pr(I_{ij} = \infty) = Pr(X_{ij} \neq j)$ for $n = 1$, $\{T_{ij} = 1\} = \{X_i = j | X_{ij} = i\}$ $\rightarrow f_i^{(1)} = Pr(T_i = 1) = Pr(X_i = j | X_i = i)$ *i* Pr $(I_{ij} = \infty$ $) = Pr(X_{ij} \neq j)$ for all $m \ge 1 | X_{0} = i$.
 $[T_{ij} = 1] = \{X_{i} = j | X_{0} = i\}$
 $\rightarrow f_{ij}^{(1)} = Pr(T_{ij} = 1) = Pr(X_{i} = j | X_{0} = i) = p_{ij}$. For $n > 1$, for $n = 1$, $\{T_{ij} = 1\} = \{X_{i} = j | X_{0} = i\}$
 $\rightarrow f_{ij}^{(1)} = \Pr(T_{ij} = 1) = \Pr(X_{i} = j | X_{0} = i) = p_{ij}$.
 $\{T_{ij} = n\} = \{X_{n} = j, X_{m} \neq j \text{ for } 1 \leq m \leq n-1 | X_{0} = i\}.$ For example, if $j = 3$ and For $n > 1$, $\{T_v = n\} = \{X_v = j, X_w \neq j \text{ for } 1 \leq m \leq n-1 | X_v$
For example, if $j = 3$ and
 $X_v = 4, X_v = 2, X_v = 2, X_v = 5, X_v = 3, X_v = 1, X_v = 3, \cdots$, then $T_{\tiny 3} = 4$.

In the following theorem we introduce, for $n > 1$, the first passage time is n if the first transition is from state i to some state $k(k \neq j)$ and then the first passage time from state k to state j is $n-1$.

Theorem (1). (First step-decomposition or Iterative relations) The first passage time probability from *i* to *j* in *n* steps, $f_i^{(n)}$ $f_{ij}^{(n)}$, can be determined iteratively by

atively by
\n
$$
f_{ij}^{(n)} = \begin{cases} p_{ij} & \text{if } n = 1 \\ \sum_{k;k \neq j} p_{ik} f_{kj}^{(n-1)} & \text{if } n \ge 2 \end{cases}
$$
\n(1)

Proof. This expression follows, since conditioning on X_1 and using the Markov property. Suppose $n = 1$, the definition yields

11001. This expression follows, since containing on
$$
X_1
$$
 and using the Markov property. Suppose *n* = 1, the definition yields\n
$$
f_{ij}^{(1)} = \Pr(T_{ij} = 1) = \Pr(X_i = j | X_{0} = i) = p_{ij}.
$$
\nFor *n* ≥ 2, $f_{ij}^{(n)} = \Pr(T_{ij} = n) = \Pr(X_{n} = j, X_{n} \neq j \text{ for } 1 \leq m \leq n-1 | X_{0} = i)$ \n
$$
= \sum_{k \in S, k \neq j} \Pr(X_{n} = j, X_{n} \neq j \text{ for } 2 \leq m \leq n-1, X_{1} = k | X_{0} = i)
$$
\n
$$
= \sum_{k \in S, k \neq j} \Pr(X_{n} = j, X_{n} \neq j \text{ for } 2 \leq m \leq n-1 | X_{1} = k, X_{0} = i) \Pr(X_{1} = k | X_{0} = i)
$$
\n
$$
= \sum_{k \in S, k \neq j} \Pr(X_{n} = j, X_{n} \neq j \text{ for } 2 \leq m \leq n-1 | X_{1} = k) \Pr(X_{1} = k | X_{0} = i)
$$
\n
$$
= \sum_{k \in S, k \neq j} \Pr(X_{n} = j, X_{n} \neq j \text{ for } 1 \leq m \leq n-2 | X_{0} = k) \Pr(X_{1} = k | X_{0} = i).
$$
\nThus, the result follows.

Summing over all *n* in (1), yields the linear equations:
 $f_{ij} = \sum_{n=1}^{\infty} f_{ij}^{(n)} = p_{ij} + \sum_{k:k\neq j} p_{ik} f_{kj}$, for $i \in SS$,

$$
f_{ij} = \sum_{n=1}^{\infty} f_{ij}^{(n)} = p_{ij} + \sum_{k;k \neq j} p_{ik} f_{kj}, \text{ for } i \in SS,
$$

for the passage or hitting probabilities from states *i* to *j* .

Theorem (2).(First entrance theorem)

For any two states *i* and *j* in a MC $\{X_n, n=0,1,2,...\}$, the relation of probability $p_{ij}^{(n)}$ in terms of $f_{ij}^{(n)}$ is given by

$$
p_{ij}^{(n)} = \sum_{k=1}^{n} f_{ij}^{(k)} p_{jj}^{(n-k)}, \text{ for } n = 1, 2, \dots.
$$

\nProof.
$$
p_{ij}^{(n)} = \Pr(X_n = j | X_0 = i)
$$

$$
= \sum_{m=1}^{n} \Pr(X_n = j, X_m = j, X_{k-1} \neq j \text{ for } 1 \le k \le m-1 | X_0 = i)
$$

$$
= \sum_{m=1}^{n} \Pr(X_n = j | X_m = j, X_{k-1} \neq j \text{ for } 1 \le k \le m-1, X_0 = i)
$$

$$
\Pr(X_m = j, X_{k-1} \neq j \text{ for } 1 \le k \le m-1, X_0 = i)
$$

$$
= \sum_{m=1}^{n} \Pr(X_n = j | X_m = j) \Pr(X_m = j, X_{k-1} \neq j \text{ for } 1 \le k \le m-1, X_0 = i)
$$

$$
= \sum_{k=1}^{n} f_{ij}^{(k)} p_{jj}^{(n-k)}, \text{ for } n = 1, 2, \dots
$$

Def. (Hitting times)

The hitting time to state *j* at time *n* starting from *i* is defined by\n
$$
h_{ij} = E\Big[T_{ij}\Big] = E\Big[T_{ij} \mid X_{0} = i\Big] = \sum_{n=0}^{\infty} n f_{ij}^{(n)}, T_{ij} < \infty.
$$

Some-times called the mean first passage time or the expected number of steps needed to go from start *i* ends up on first reaching state j in a finite number of steps n).

The <u>return time</u> or <u>mean recurrence time</u> is the expected number of steps to return to state *i* starting from state *i*, for the first time:
 $h_{ii} = h_i = \sum_{n \ge 1} n \Pr(X_n = i | X_0 = i, X_m \ne i, m < n).$ steps to return to state i starting from state i , for the first time:

$$
h_{ii} \equiv h_{i} = \sum_{n \geq 1} n \Pr(X_{n} = i | X_{0} = i, X_{m} \neq i, m < n).
$$

Def. (Mean recurrence time)

The mean recurrence time of state i is the expected return time to The mean recurrence time of state *i* is the expected retural
state *i*: $h_i = E[T_{ii}] = E[T_i | X_0 = i] = \sum_{i=1}^{\infty} k \Pr\{T_{ii} = k\} = \sum_{i=1}^{\infty} n f_{ii}^{(n)}$ $\sum_{i=1}^{n} k \Pr \{ T_{ii} = k \} = \sum_{n=0}^{\infty}$ In recurrence time of state *i* is the expected return in the i is the expected return $E_i = E[T_{ii}] = E[T_i | X_0 = i] = \sum_{k=1}^{\infty} k \Pr\{T_{ii} = k\} = \sum_{n=0}^{\infty} n f_{ii}^{(n)}$ $\sum_{k=1}^{\infty} k \Pr \{ T_{ii} = k \} = \sum_{n=1}^{\infty} k$ an recurrence time of state *i* is the expected return time to $h_i = E[T_{ii}] = E[T_i | X_0 = i] = \sum_{k=1}^{\infty} k \Pr\{T_{ii} = k\} = \sum_{n=0}^{\infty} n f_{ii}^{(n)}$. e *i* is the expected reture

A simple way to calculate h_{ij} & h_{ij}

For a fixed j , $\{h_{ij}, i \in T\}$ satisfy the set of linear simultaneous equations (i.e., given $\{p_{ij}\}\$, we can obtain $\{h_{ij}, i \in T\}$ by solving the following equations):

$$
h_{ij} = p_{ij} + \sum_{k \neq j} p_{ik} (1 + h_{kj}),
$$

where $h_i = E[T_i | X_0 = j] = \sum_{i=1}^{N} nf_{ii}^{(n)}$ $h_{j} = E\Big[T_{j} | X_{0} = j\Big] = \sum_{n=1}^{\infty} n f_{jj}^{(n)}$ ∞ $= E(T_i | X_{0} = j] = \sum_{n=1}^{\infty} n f_{jj}^{(n)}$ t the mean recurrent time of state *j* . Since $p_{ij} + \sum p_{ik} = 1$ *k j* $p_{ii} + \sum p$ \neq $+\sum p_{ik}=1$, then

$$
h_{ij} = 1 + \sum_{k \neq j} p_{ik} h_{kj}, \text{ for } i \neq j
$$

$$
h_{j} \equiv h_{ij} = 1 + \sum_{k \neq j} p_{jk} h_{kj}.
$$

Even though state *j* is **recurrent**, it is not necessary that h_j is finite when the state space is infinite, i.e., If f_{ij} < 1, we have $h_{ij} = \infty$. Recurrent states are classified into two types, it is called

- **null recurrent** if h_i is infinite: $h_i = E[T_{ii}] = \infty$, or
- **- positive recurrent** (non-null), if h_i is finite: $h_i = E[T_{ii}] < \infty$.

An **absorbing** state is a special kind of positive recurrent state.

Example (1). Consider the MC $\{X_n, n = 0,1,...\}$ on the state space $SS = \{0,1,2,3\}$ with the TPM:

$$
\mathbf{M} = \begin{pmatrix} 1/2 & 1/2 & 0 & 0 \\ 1/3 & 2/3 & 0 & 0 \\ 1/4 & 1/4 & 1/4 & 1/4 \\ 0 & 0 & 0 & 1 \end{pmatrix}
$$

Classify the states of the $MC{X_n, n = 0,1,...}$. Is the state 0 recurrent or transient? If it is recurrent, compute the mean recurrence time. What about the state 2?

Solution. There are three classes: $\{0,1\}$, $\{2\}$ and $\{3\}$.

The **probability of first return** to state 0 will occur at time *n*,
when the initial state is 0:
 $f_{00}^{(n)} = Pr(X_n = 0, X_m \neq 0 \text{ for } 1 \leq m \leq n-1 | X_0 = 0) \text{ for } n = 1, 2, \cdots,$ when the initial state is 0:

he initial state is 0:
 $C_n^{(n)} = Pr(X_n = 0, X_m \neq 0 \text{ for } 1 \le m \le n-1 | X_0 = 0)$ $n = 0, X_m \neq 0 \text{ for } 1 \leq m \leq n-1 | X_0 = 0 \text{ for } n = 1, 2, \cdots,$ are obtained by $f_{00}^{(1)} = Pr(X_1 = 0 | X_0 = 0) = p_{00} = 1/2$

$$
f_{\infty}^{(1)} = \Pr(X_{n} = 0, X_{n} \neq 0 \text{ for } 1 \leq m \leq n-1 | X_{0} = 0) \text{ for } n = 1, 2, \cdots,
$$

\nare obtained by
\n
$$
f_{\infty}^{(1)} = \Pr(X_{1} = 0 | X_{0} = 0) = p_{\infty} = 1/2
$$
\n
$$
f_{\infty}^{(2)} = \Pr(X_{2} = 0, X_{1} \neq 0 | X_{0} = 0) = p_{\infty}p_{10} = (1/2)(1/3)
$$
\n
$$
\vdots
$$
\n
$$
f_{\infty}^{(n)} = \frac{1}{2} \left(\frac{2}{3} \right)^{n-2} \left(\frac{1}{3} \right), \quad n \geq 2.
$$
\nTherefore, $f_{\infty} = \sum_{n=1}^{\infty} f_{\infty}^{(n)} = \frac{1}{2} + \sum_{n=2}^{\infty} \frac{1}{2} \left(\frac{2}{3} \right)^{n-2} \left(\frac{1}{3} \right) = \frac{1}{2} + \frac{1}{6} \sum_{n=2}^{\infty} \left(\frac{2}{3} \right)^{n-2} = 1.$
\nHence, the state 0 is recurrent.
\nThe mean recurrence time of state 0 is calculated by
\n
$$
h_{0} = E[T_{0} | X_{0} = 0] = \sum_{n=1}^{\infty} n f_{\infty}^{(n)} = \frac{1}{2} + \frac{1}{6} \sum_{n=2}^{\infty} n \left(\frac{2}{3} \right)^{n-2} = \frac{1}{2} + \frac{1}{4} \sum_{n=2}^{\infty} n \left(\frac{2}{3} \right)^{n-1}
$$

Hence, the state 0 is recurrent.

The mean recurrence time of state 0 is calculated by 2 1

Therefore,
$$
f_{00} = \sum_{n=1}^{N} f_{00} = \frac{1}{2} + \sum_{n=2}^{N} \frac{1}{2} \left(\frac{1}{3} \right) + \frac{1}{3} \left(\frac{1}{3} \right) = \frac{1}{2} + \frac{1}{6} \sum_{n=2}^{N} \left(\frac{1}{3} \right) = 1
$$
.
\nHence, the state 0 is recurrent.
\nThe mean recurrence time of state 0 is calculated by
\n
$$
h_0 = E[T_0 | X_0 = 0] = \sum_{n=1}^{\infty} n f_0^{(n)} = \frac{1}{2} + \frac{1}{6} \sum_{n=2}^{\infty} n \left(\frac{2}{3} \right)^{n-2} = \frac{1}{2} + \frac{1}{4} \sum_{n=2}^{\infty} n \left(\frac{2}{3} \right)^{n-1}
$$
\n
$$
= \frac{1}{2} + \frac{1}{4} \left[\frac{2(2/3) - (2/3)^2}{(1 - 2/3)^2} \right] = \frac{1}{2} + \frac{1}{4} (8) = \frac{5}{2}.
$$

So, state 0 is positive recurrent.

Note that. The mean recurrence time of state 0 can be also obtained by conditioning on the first state visited. **e that.** The mean recurrence time of state 0 can be also
uned by conditioning on the first state visited.
 $h_0 = \sum_k p_{0k} h_{k0} = p_{00} h_{00} + p_{01} h_{10} = p_{00} E[T_0 | X_1 = 0] + p_{01} E[T_0 | X_1 = 1]$

$$
h_{\scriptscriptstyle 0} = \sum_{\scriptscriptstyle k} p_{\scriptscriptstyle 0k} h_{\scriptscriptstyle k\scriptscriptstyle 0} = p_{\scriptscriptstyle 00} h_{\scriptscriptstyle 00} + p_{\scriptscriptstyle 01} h_{\scriptscriptstyle 10} = p_{\scriptscriptstyle 00} E\big[T_{\scriptscriptstyle 0} \mid X_{\scriptscriptstyle 1} = 0\big] + p_{\scriptscriptstyle 01} E\big[T_{\scriptscriptstyle 0} \mid X_{\scriptscriptstyle 1} = 1\big]
$$
\n
$$
= \frac{1}{2} E\big[T_{\scriptscriptstyle 0} \mid X_{\scriptscriptstyle 1} = 0\big] + \frac{1}{2} E\big[T_{\scriptscriptstyle 0} \mid X_{\scriptscriptstyle 1} = 1\big] = \frac{1}{2} + \frac{1}{2} \big\{ 1 + E\big[T_{\scriptscriptstyle 10}\big] \big\} = 1 + \frac{1}{2} E\big[T_{\scriptscriptstyle 10}\big].
$$
\n63. The result is the right-hand side of the equation of the equation is

Since T_{10} follows geometric distribution with mean 3 we obtain the same result.

Similarly for the state 2 , The **probability of first return** to state 2 will occur at time n , when the initial state is 2: *x* for the state 2, The **probability of first return** to
ir at time *n*, when the initial state is 2:
 $f_{22}^{(n)} = Pr(X_n = 2, X_m \neq 2 \text{ for } 1 \le m \le n-1 | X_0 = 2)$, for *n*:

ill occur at time *n*, when the initial state is 2:
 $f_{22}^{(n)} = Pr(X_n = 2, X_m \neq 2 \text{ for } 1 \le m \le n-1 | X_0 = 2)$, for $n = 1, 2$, are obtained by $f_{22}^{(1)} = Pr(X_1 = 2 | X_0 = 2) = p_{22}$ d by
= Pr($X_1 = 2 | X_0 = 2$) = $p_{22} = 1/4$,

$$
f_{22} = 11 (X_n - 2, X_m + 2 \text{ for } 1 \le m \le n-1 | X_0 - 2 \text{), for } n = 1, 2,
$$

are obtained by

$$
f_{22}^{(1)} = \Pr(X_1 = 2 | X_0 = 2) = p_{22} = 1/4,
$$

$$
f_{22}^{(2)} = \Pr(X_2 = 2, X_1 \neq 2 | X_0 = 2) = p_{21} p_{12} = (1/4)(0) = 0,
$$

$$
f_{00}^{(n)} = 0, \text{ for } n \ge 2.
$$

Therefore, $f_{22} = \sum_{n=1}^{\infty} f_{22}^{(n)}$ $= 0$, for $n \ge 2$.
 $\sum_{n=1}^{\infty} f_{22}^{(n)} = \frac{1}{4} + 0 = \frac{1}{4}$ $\frac{1}{4} + 0 = \frac{1}{4}$ $f_{22} = \sum_{n=1}^{\infty} f$ ∞ $=\sum_{n=1}^{\infty} f_{22}^{(n)} = \frac{1}{4} + 0 = \frac{1}{4}$. So, the state 2 is transient.

Example (2).(Gambler's Ruin Problem)

A gambler keeps playing a game until his or her fortune reaches to 0 or *L* . It is assumed that at each play of the game the gambler wins one unit with prob. *p* and loses one unit with prob. $q = 1 - p$.

- 1-What is the probability that, starting with *i* units, the gambler's fortune will reach *L* before going down to 0.
- 2-What is the expected number of bets until the gambler's fortune will reaches 0 or L, starting in *i* units. Assume that $p \neq 1/2$

Solution. Let X_{n} be the gambler's fortune after n^{n} -play. Then X_{n} takes states of the state space $\{0,1,\ldots,L\}$ and $\{X_{n}, n=0,1,\ldots\}$ will be a MC with the following transition probabilities:

 $p_{i,i+1} = p$, $p_{i,i-1} = 1 - p = q$, for $i = 1, 2, ..., L-1$; and $p_{00} = p_{LL} = 1$. So, the states are classified into three classes: $\{0\}$, $\{1, 2, ..., L-1\}$, $\{L\}$. Here the state 0 and the state *L* are **absorbing** and **recurrent**, but the states in the class of $\{1, 2, ..., L-1\}$ will be **transient**. In the longrun($n \to \infty$), therefore, X_n goes to state 0 or state L.

We are interested in obtaining f_{μ} , $i \in \{0,1,\dots,L\}$, the probability the state eventually goes to state *L* starting in *i* . obviously,

$$
f_{0,L} = 0
$$
 and $f_{L,L} = 1$.

The following holds from theorem (1):

$$
f_{1L} = pf_{2L},
$$

\n
$$
f_{L} = pf_{i+1L} + qf_{i-1L}, \text{ for } i = 2,...,L-2
$$

\n
$$
f_{L-1L} = qf_{L-2L} + p.
$$

It turns out that $f_{ii} = pf_{i+1} + qf_{i-1}$, for $i = 1, 2, ..., L-1$. Rewriting this equation yields

$$
f_{i+1} - f_{ii} = \frac{q}{p} (f_{i} - f_{i-1})
$$
, for $i = 1, 2, ..., L-1$.

Therefore, we have

Therefore, we have
\n
$$
f_{iL} - f_{i-1L} = \frac{q}{p} (f_{i-1L} - f_{i-2L}) = ... = \left(\frac{q}{p}\right)^{i-1} f_{iL}, \text{ for } i = 2, 3, ..., L-1
$$
\n
$$
\sum_{k=2}^{i} (f_{kL} - f_{k-1L}) = f_{iL} \sum_{k=2}^{i} \left(\frac{q}{p}\right)^{k-1}.
$$
\nHence,
\n
$$
f_{iL} = \begin{cases} \frac{1 - (q/p)^{i}}{1 - (q/p)} f_{iL}, & \text{if } q/p \neq 1 \\ \frac{1 - (q/p)}{1 - (q/p)} f_{iL}, & \text{if } q/p = 1 \end{cases}
$$

Hence,

 f_{μ} is obtained from the fact that, $f_{\mu} = 1$. So, finally we have

$$
f_{\mu} = \begin{cases} \frac{1 - (q/p)^{i}}{1 - (q/p)^{i}}, & \text{if } q/p \neq 1 \\ i/L, & \text{if } q/p = 1 \end{cases}.
$$

Remarks

1-For a large
$$
L(L \rightarrow \infty)
$$
 the above becomes
\n $f_{iL} \rightarrow \begin{cases} 1-(q/p)^{i}, & \text{if } p>1/2 \\ 0, & \text{if } p \le 1/2 \end{cases}$

2-The probability that, starting in state *i*, state *j* ($j = 1, 2, \ldots, L$) is eventually reached before state 0 is given by
 $\frac{1-(q/p)^i}{i}$ if $q/p \neq 1$

() () 1 , if 1 1 , if 1 *i j ij q p ^f q p i j q p* − = − =

Let X_i be the winning on the j^* bet and B be the number of bets until the gambler's fortune reaches 0 or *L*. Then,
 $B = \min \left\{ m : \sum_{j=1}^{m} X_j = -i \text{ or } L - i \right\}.$

$$
B=\min\Big\{m\,{:}\,\overset{_{m}}{\underset{_{j=1}}{\sum}}X_{_{j}}=-i\,\text{ or }L\,{-}\,i\Big\}.
$$

Note that *B* is a stopping time for the X_i 's'. So,

Note that *B* is a stopping time for the
$$
X_j
$$
's'. So,
\n
$$
E\left[\sum_{j=1}^B X_j\right] = E[B]E[X_j] = (2p-1)E[B].
$$

On the other hand, it follows that $\sum_{j=1}^{n}$ w.p. w.p. 1 *B* $\sum_{j=1}$ \longrightarrow *j* $X_i = \begin{cases} L - i \\ 0 \end{cases}$ *i* α $\begin{array}{ccccc} \text{I} & -1 & \text{W.D.} & -\alpha \end{array}$ $\left(L-\right)$ $\sum X_i = \left\{$ $\begin{cases} L - i & \text{w.p.} \ -i & \text{w.p.} \ 1 - \alpha \end{cases}$,

where α is the probability that the fortune reaches L before 0, that $(q/p)^{2}$ $(q/p)^{2}$ 1 1 *i L q p* $\alpha = \frac{a}{1-(q/p)}$ − = − .

Therefore,
$$
E\left[\sum_{j=1}^{B} X_{j}\right] = (L - i)\alpha - i(1 - \alpha) = L\alpha - i
$$
. So,
\n $(2p-1)E[B] = L\alpha - i$, or $E[B] = \frac{L\alpha - i}{2p-1} = \frac{1}{2p-1} \left\{ \frac{L(1-(q/p))}{1-(q/p)^{i}} - i \right\}.$

Example (3).

Consider a MC with state space $SS = \{1, 2, 3\}$ and TPM **M**:

$$
\mathbf{M} = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{6} & \frac{1}{3} \\ \frac{1}{3} & \frac{3}{5} & \frac{1}{15} \end{pmatrix}.
$$

Determine the probability that the first visit to state $j = 3$ will occur at time *n*, when the initial state is $i \in SS$.

What is the probability that state $j = 3$ is never visited? **Solution**. Let $f_{ij}^{(n)}$ the first passage time probabilities to state j starting from state *i*, then $f_{ii}^{(n)} = Pr(X_n = j, X_{n-1} \neq j, ..., X_1 \neq j | X_0 = i)$. state $j = 3$ is never visited?

assage time probabilities to state
 $\lim_{n \to \infty} \frac{y_n}{n!} = \Pr(X_n = j, X_{n-1} \neq j, ..., X_1 \neq j | X_0$ *n i* state $j = 3$ is never visited?

passage time probabilities to state j
 $f_{ij}^{(n)} = Pr(X_n = j, X_{n-1} \neq j, ..., X_1 \neq j | X_0 = i),$ $f_{ij}^{(n)} = Pr(X_n = j, X_{n-1} \neq j, ..., X_1 \neq j | X_0 = i),$
 $p_{ij},$ $n = 1$

$$
f_{ij}^{(n)} = \begin{cases} p_{ij}, & n = 1 \\ \sum_{k \in SS - \{j\}} p_{ik} f_{kj}^{(n-1)}, & n \ge 2 \end{cases}
$$

In a **matrix form**, suppose that the column vector of the *n -*step

In a **matrix form**, suppose that the column vector of the *n*-step first passage time probabilities to the target state
$$
j = 3
$$
 is desired:
\n
$$
\mathbf{f}^{(n)} = \mathbb{Z}\mathbf{f}^{(n-1)}, \text{ with, } \mathbf{f}^{(n)} = (f_{ij}^{(n)})_{i,j \in SS} = (\mathbf{f}_{j}^{(n)})_{j \in SS} = (\mathbf{f}_{1}^{(n)})_{i \in SS} \begin{pmatrix} f_{13}^{(n)} \\ f_{23}^{(n)} \end{pmatrix},
$$
\n
$$
\mathbf{f}_{3}^{(n)} = (f_{13}^{(n)})_{i \in SS} = \begin{pmatrix} f_{13}^{(n)} \\ f_{23}^{(n)} \end{pmatrix},
$$

and the matrix $\mathbb Z$ is the matrix **M** with column j of the target state replaced by a column of **zeroes**:

$$
\mathbb{Z} = 2 \begin{pmatrix} p_{11} & p_{12} & 0 \\ p_{21} & p_{22} & 0 \\ p_{31} & p_{32} & 0 \end{pmatrix}.
$$

When $j = 3$, i.e., to compute $f_{\text{S}}^{(n)}$ 3 $f_i^{(n)}$, one may start with $n = 1$. The column probability vector of going from any state $i \in SS$ to state $j = 3$ for the first time in one step, $f_{i}^{(i)}$ $f_3^{\text{\tiny (1)}}$ is simply the vector of onestep TP of the third column $(p_{i_3})_{i \in S}$ of the TPM **M**, that is $f_{13}^{(0)}$ $\left(\begin{array}{c} p_1 \ p_2 \end{array}\right)$

$$
\mathbb{Z} = 2 \begin{pmatrix} p_{11} & p_{12} & 0 \\ p_{21} & p_{22} & 0 \\ p_{31} & p_{32} & 0 \end{pmatrix}.
$$

\nWhen $j = 3$, i.e., to compute $\mathbf{f}_1^{(n)}$, one may start with $n = 1$.
\nThe column probability vector of going from any state $i \in SS$ to $j = 3$ for the first time in one step, $\mathbf{f}_1^{(n)}$ is simply the vector of step TP of the third column $(p_{i,j})_{\text{ess}}$ of the TPM **M**, that is\n
$$
\mathbf{f}^{(n)} = \mathbf{f}_1^{(n)} = (\mathbf{f}_2^{(n)})_{\text{ess}} = \begin{pmatrix} f_{i,j}^{(n)} \\ f_{j,j}^{(n)} \\ f_{j}^{(n)} \end{pmatrix} = \begin{pmatrix} p_{i,j} \\ p_{i,j} \\ p_{i,j} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ \frac{1}{2} \end{pmatrix},
$$
\nwith the matrix Z is\n
$$
\mathbb{Z} = 2 \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{6} & 0 \\ \frac{1}{3} & \frac{3}{5} & 0 \end{pmatrix}.
$$
\nThen $\mathbf{f}^{(2)} = \mathbb{Z} \mathbf{f}^{(1)} = 2 \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{6} & 0 \\ \frac{1}{3} & \frac{3}{5} & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{3}{5} & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{3}{5} & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{3}{5} & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{3}{5} & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ \frac{1}{3} & \frac{1}{$

Therefore, the first passage probabilities to state 3 starting from state $i = 1$ is $f_{13} = \sum f_{13}^{(n)}$ 1 $n \choose 0 = 0$ *n* $f_{13} = \sum f$ \geq $=\sum f_{13}^{(n)}=0,$

.

the first passage probabilities to state 3 starting from state $i = 2$ is

sage probabilities to state 3 starting from state
$$
i = 2
$$

\n
$$
f_{23} = \sum_{n\geq 1} f_{23}^{(n)} = \frac{1}{3} \sum_{n\geq 1} \left(\frac{1}{6}\right)^{n-1} = \frac{1}{3} \frac{1}{1 - 1/6} = \frac{1}{3} \times \frac{6}{5} = \frac{2}{5},
$$
\nsage probabilities to state 3 starting from state $i = 3$
\n
$$
f_{33}^{(n)} = \frac{1}{15} + \frac{1}{5} \sum_{n=1}^{\infty} \left(\frac{1}{6}\right)^{n-2} = \frac{1}{15} + \frac{1}{5} \frac{1}{1 - 1/6} = \frac{1}{15} + \frac{1}{5} \times \frac{6}{5} = \frac{23}{75}.
$$

the first passage probabilities to state 3 starting from state
$$
i = 2
$$
 is
\n
$$
f_{23} = \sum_{n\geq 1} f_{23}^{(n)} = \frac{1}{3} \sum_{n\geq 1} \left(\frac{1}{6}\right)^{n-1} = \frac{1}{3} \frac{1}{1-\frac{1}{6}} = \frac{1}{3} \times \frac{6}{5} = \frac{2}{5},
$$
\nthe first passage probabilities to state 3 starting from state $i = 3$ is
\n
$$
f_{33} = \sum_{n\geq 1} f_{33}^{(n)} = \frac{1}{15} + \frac{1}{5} \sum_{n\geq 2} \left(\frac{1}{6}\right)^{n-2} = \frac{1}{15} + \frac{1}{5} \frac{1}{1-\frac{1}{6}} = \frac{1}{15} + \frac{1}{5} \times \frac{6}{5} = \frac{23}{75}.
$$
\nTherefore the vector of first passage probabilities to state 3.

Therefore, the vector of first passage probabilities to state 3 ge probabilities to sta
 $\begin{pmatrix} f_{13} \end{pmatrix}$ $\begin{pmatrix} 0 \end{pmatrix}$

Therefore, the vector of first passage probabilities to state 3

\nstarting from
$$
i \in SS
$$
 is $\mathbf{f}_3 = (f_{i3})_{i \in SS} = \begin{pmatrix} f_{13} \\ f_{23} \\ f_{33} \end{pmatrix} = \begin{pmatrix} 0 \\ 2/5 \\ 23/75 \end{pmatrix}$, and the vector

of the probability that state 3 is never visited starting from $i \in SS$ is

$$
(333) \quad (23/73)
$$

by that state 3 is never visited starting from

$$
\mathbf{f}_3^* = (1 - f_{13})_{i \in SS} = \begin{pmatrix} 1 - f_{13} \\ 1 - f_{23} \\ 1 - f_{33} \end{pmatrix} = \begin{pmatrix} 1 \\ 3/5 \\ 52/75 \end{pmatrix}.
$$